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SUMMARY
The sub-ventricular zone (SVZ) is the most well-characterized neurogenic area in the mammalian brain. We
previously showed that in 65%of patients with glioblastoma (GBM), the SVZ is a reservoir of cancer stem-like
cells that contribute to treatment resistance and the emergence of recurrence. Here, we build a single-nu-
cleus RNA-sequencing-based microenvironment landscape of the tumor mass and the SVZ of 15 patients
and two histologically normal SVZ samples as controls.We identify a ZEB1-centeredmesenchymal signature
in the tumor cells of the SVZ. Moreover, the SVZ microenvironment is characterized by tumor-supportive mi-
croglia, which spatially coexist and establish crosstalks with tumor cells. Last, differential gene expression
analyses, predictions of ligand-receptor and incoming/outgoing interactions, and functional assays reveal
that the interleukin (IL)-1b/IL-1RAcP andWnt-5a/Frizzled-3 pathways represent potential therapeutic targets
in the SVZ. Our data provide insights into the biology of the SVZ in patients with GBM and identify potential
targets of this microenvironment.
INTRODUCTION

Glioblastoma (GBM) is a fatal disease of the adult central ner-

vous system. Poor survival and extensive heterogeneity leading

to treatment resistance and emergence of the recurrent tumor

are key clinical and biological features. Clinical management of

GBM is challenging due to its heterogeneous nature, invasive

potential, and poor response to radio- and chemotherapy.1,2

As a result, GBM inevitably recurs2 and only 6.9% of patients

survive 5 years post-diagnosis.3 We previously showed that in

most patients with GBM, the sub-ventricular zone (SVZ) of the

lateral ventricles is a reservoir of cancer stem-like cells (CSCs)

that show distinct patterns of treatment resistance compared

with matched CSCs from the tumor mass, and contribute to

seeding of the recurrent tumor.4,5 Despite the extensive inter-tu-

mor heterogeneity within GBM, in nearly 80% of patients, the

SVZ classifies as the molecular subtype with the worst prog-
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nosis,4 characterized by the presence of tumor-associated

macrophages (TAMs),6–28 which consist of monocyte-derived

macrophages (MDMs) and microglia. Therefore, identifying ther-

apeutic targets in the SVZ is key to developing more effective

treatments. However, sampling and characterization of the

SVZ in GBM is challenging, as this area is extremely small and

must be objectively identified during tumor surgical resection.

Given the cellular and molecular intra-tumor heterogeneity

characteristic of GBM, the functional role of tumor, and normal

cells in the SVZ cannot be predicted based on analyses of sam-

ples from the tumor mass. To overcome this challenge, using our

fluorescence-guided multiple sampling (FGMS) scheme,29 we

built a single-nucleus RNA-sequencing (snRNA-seq)-based

microenvironment landscape of the SVZ (T_SVZ) using tissues

from 15 patients with GBM (14 IDH wild-type, 1 IDH mutant).

For 14 of these patients, we circumvented the limitations of sin-

gle-cell RNA-seq by using snRNA-seq, which allowed us to
ary 28, 2025 ª 2024 The Author(s). Published by Elsevier Inc. 1
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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include frozen samples and preserve the cell composition in

the tumor microenvironment. By systematically comparing the

T_SVZ with tumor mass (T_Mass) samples isolated from the

same patients and two histologically normal SVZ (N_SVZ) sam-

ples, and using a number of computational tools and experi-

mental methods, we identified two pathways that represent

potential targets in the T_SVZ microenvironment.

RESULTS

A single-nucleus landscape of the tumor mass, tumor
SVZ, and normal SVZ microenvironments in patients
with GBM
Using our FGMS scheme,29 we built a single-nucleus landscape

of the T_Mass, T_SVZ, and N_SVZ microenvironments in GBM.

We collected 15 T_Mass samples and 15 matched T_SVZ sam-

ples from 15 untreated patients undergoing surgical resection for

presumed high-grade glioma (Table S1A summarizes patient

clinical and molecular information). For each sample, we defined

the status of the GBM genetic drivers30,31 (Table S1B). As con-

trols, 2 N_SVZ samples were collected from two individuals:

one SVZ was collected postmortem and the other during tumor

surgical resection. We performed snRNA-seq using gel bead-in-

emulsion technology.We obtained 6.33 106 nuclei from T_Mass

samples, 8.0 3 106 nuclei from T_SVZ samples, and 1.1 3 106

nuclei from N_SVZ samples (Figure 1A; Table S1C). For each pa-

tient and each area (T_Mass, T_SVZ, and N_SVZ), we deter-

mined the number of detected genes and uniquemolecular iden-

tifiers (Figure S1A). We sequenced about 3 to 7 3 103 nuclei/

sample. An estimated total of 59,967, 30,223, and 7,534 cells

were detected after sequencing for T_Mass, T_SVZ, and

N_SVZ, respectively (Figure 1A). Our pipeline included cell type

annotation to define the T_Mass, T_SVZ, and N_SVZ landscapes

and subsequent bioinformatic analyses and experimental work

to identify transcription factor regulatory networks, define

cellular dynamics, identify differentially expressed genes of the

three areas, and characterize TAMs. These steps were followed

by spatial transcriptomics, ligand-receptor predictions, and

functional phenotyping to identify interactions specific to the

T_SVZ and define their clinical significance (Figure 1A). We inte-

grated data from all patients by areas (T_Mass, T_SVZ, and

N_SVZ, Figure 1B top left), and by cluster (Figure 1B top right)

and calculated the proportion of cells in the three areas for

each patient by cluster (Figures 1C and S1B). Of note, cluster

15 was exclusive to the two N_SVZ samples (histologically

normal samples 1 and 2, HNS1 and 2), confirming that these

two samples were distinguishable from the T_Mass and T_SVZ

(Figures 1C and S1B).

Transcriptional analysis of copy-number variations (CNVs) by

inferCNV32 was used to find alterations (amplifications and dele-

tions) in each cluster of the T_Mass and the T_SVZ having the

N_SVZ clusters as a reference. We first integrated data (Fig-

ure 1D top), and then calculated the proportion of tumor and

normal cells by clusters (Figure 1D bottom). We confirmed that

the N_SVZ was composed of normal cells only and had a normal

chromosomal landscape (Figure S2) and identified expected

CNVs such as chromosome 7 amplification and chromosome

10 deletion in the T_SVZ (Figure 1E) and the T_Mass (Figure S2).
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For each cell subset identified by clustering in each area, we

annotated cell types based on known markers and reference

classifiers (Figure 1F top; Figure S3A). Tumor cells depicted in

Figure 1F were assigned using the cell state classification by

Neftel et al.16 We also calculated the proportion of each cell

type in the three areas (Figure 1F bottom). Among the tumor

cell states, the astrocyte-like (GBMac) state was not represented

in the T_SVZ (Figure 1F bottom middle), while tumor cells in

matched T-Mass samples represent all four cell states: GBMac,

oligodendrocyte-progenitor-like (GBMopc), mesenchymal-like

(GBMmes), and neural-progenitor-like (GBMnpc) (Figure 1F bot-

tom left). GBMopc and GBMac were present in similar propor-

tion in the T_Mass (17.4% and 17.2%, respectively) and were

the most abundant tumor cell populations in this area, while

GBMmes was the second most abundant state in the T_SVZ

(13.2% vs. 6.5% in the T_Mass). The T_SVZ also showed an in-

crease in the GBMnpc state (10.1% vs. 5.5% in the T_Mass).

Some tumor cell clusters in both areas (22.2% in the T_SVZ

and 10.5% in the T_Mass) could not be captured by the existing

four states16; we labeled those clusters as CancerCell. The

same analysis was performed for each patient and each area

allowed us to quantify the abundance of each tumor cell state16

(Figure S3B).

Among TAMs, microglia were more abundant in the T_SVZ

compared with MDMs (10.5% vs. 1.7%) (Figure 1F bottom mid-

dle), whereas both cell types were similar in the T_Mass (7.6%

and 5.5%, respectively) (Figure 1F bottom left). The N_SVZ

was composed of the expected normal brain cell types,

including oligodendrocytes, astrocytes, and neurons. The cor-

rect sampling of the tissue adjacent to the ventricle in the

N_SVZ was confirmed by the presence of ependymal cells (Fig-

ure 1F bottom right), in agreement with a previous report.33

Overall, these results show that the T_SVZ is characterized by

a different cellular landscape than the T_Mass and the N_SVZ.

The tumor SVZ microenvironment harbors tumor cell
populations characterized by a ZEB1-centered
mesenchymal signature and a distinct regulon profile of
microglia
We started our analysis by defining the cellular dynamics of tu-

mor cells in the T_Mass and the T_SVZ. Using CellRank 2,34,35

we identified macrostates in the two areas. Macrostates are

groups of cells marked by similar gene expression profiles and

cellular dynamics. The number of total macrostates is selected

heuristically using an elbow graph. Macrostates are mapped to

specific cell classes or other annotations according to their over-

lap using underlying gene expression; thus, multiple macro-

states may align with the same cell class. In this analysis, we

found that the T_Mass was characterized by three GBMac mac-

rostates (GBMac p1, p2, and p3), one GBMopc, one GBMnpc,

and one GBMmes (Figure 2A left). In contrast, the T_SVZ was

characterized by three GBMmes macrostates (GBMmes p1,

p2, and p3), two CancerCell (CancerCell p1, and p2), and

one GBMopc (Figure 2A right). CancerCell and GBMmes

cells were more undifferentiated than other tumor cells in the

T_Mass and in the T_SVZ, respectively, suggesting different

transcriptional dynamics and directional flows among cell popu-

lations (Figure 2A). We then identified initial and terminal states
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Figure 1. A single-nucleus landscape of the tumor mass, tumor SVZ, and normal SVZ microenvironments in patients with GBM

(A) Schematic of the tissue collection pipeline using our previously published fluorescence-guided multiple sampling (FGMS) scheme.29 Tumor mass and SVZ

samples were collected from 15 patients. Histologically normal SVZ samples were collected from two individuals: one SVZ was collected as postmortem tissue

and the other during tumor surgical resection. Due to poor sample quality, cells obtained fromGBM4 are not included in the counting shown in this schematic. The

number of cells obtained from each area, based on the number of total nuclei sequenced, is in parentheses under each illustrative Uniform Manifold Approxi-

mation and Projection (UMAP). Bioinformatic analysis and experimental work were performed to identify the transcription factor (TF) regulatory networks, define

cellular dynamics, identify differentially expressed genes (DEGs) and tumor-associated macrophage (TAM) activation signatures, followed by spatial tran-

scriptomics analysis, ligand-receptor predictions, and functional phenotyping to identify interactions specific of the tumor SVZ with clinical significance. Created

with BioRender.com.

(B) Integrated UMAPs of all cells by area (Tumor Mass = T_Mass, yellow; Tumor SVZ = T_SVZ, purple; Normal SVZ = N_SVZ, blue) (left) and cluster (right).

(C) Proportion of cells in the three areas from each patient by cluster (same color code as in B). The gradient color indicates the patient contribution to the

identified clusters in each area.

(D) Integrated UMAP of all cells colored by class (normal = gray and tumor = red based on copy-number variations, top) and proportion of cells from each class by

cluster (bottom).

(E) Copy-number variations in integrated T_SVZ samples and clustered by cancer cell types (y axis). Genomic region of each variation is presented by chro-

mosomal location (x axis). Reference cells are from integrated N_SVZ samples (Figure S2).

(F) UMAPs of each area showing cell type annotation. T_Mass (left), T_SVZ (middle), and N_SVZ (right), top. Proportion of each cell type in the three areas, bottom.

Tumor cells were annotated using the cell state classification of Neftel.16 NPC, neural progenitor cells; OPC, oligodendrocyte precursor cells; MDM, monocyte-

derived macrophages.
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(Figures 2B and S4A), and fate probabilities (Figure S4B) and

asked whether the initial macrostates differed between the two

areas. Specifically, in this analysis, the state with the lowest

incoming transition probabilities is automatically assigned as

an initial state. Conversely, the state(s) with the highest incoming

or self-transition probabilities are assigned as terminal states,

while all others are deemed intermediate. The initial macrostate

of the T_Mass was GBMac p3 (Figure 2B left), whereas for

the T_SVZ it was GBMmes p1 (Figure 2B right). Moreover,
latent time analysis revealed additional differences between

the T_Mass (Figure 2C left) and the T_SVZ (Figure 2C right) at

the level of transcription factors (TFs) and co-factors. Only the

T_SVZ had distinct expression patterns: some TFs and co-fac-

tors, such as ANXA11, HIF1A, and FOXO1, showed an initial

expression trend, whereas others, such as GLI2 and ID4, had a

terminal expression trend (Figure 2C right). In contrast, the

T_Mass was characterized by TFs and co-factors with terminal

and more homogeneous expression trends (Figure 2C left).
Cell Reports 44, 115149, January 28, 2025 3
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Figure 2. The tumor SVZ microenvironment

harbors tumor cell populations character-

ized by a ZEB1-centered mesenchymal

signature and a distinct regulon profile of

microglia

(A) Circular projections of tumor cells according to

fate probabilities toward themacrostates, with cell

type annotation as in Figure 1F. Only tumor cells of

the T_Mass (top left) and T_SVZ (top right) were

analyzed using CellRank 2.34,35

(B) CellRank 2-computed initial macrostates in the

T_Mass (bottom left) and T_SVZ (bottom right).

Macrostates are color-coded as in (A).

(C) Area-specific heatmaps (T_Mass, left and

T_SVZ, right) showing gene expression trends of

the top 40 genes with expression sorted accord-

ing to latent time. Only transcription factors and

co-factors are shown.

(D) Heatmaps of regulon enrichment expressed as

area under the curve (AUC) of all T_Mass and

T_SVZ samples. Regulons were identified by sin-

gle-cell regulatory network inference and clus-

tering (SCENIC).36,37 Tumor cells of each area

(top) and normal cells (bottom) are depicted. Only

the top 5 regulons for each cell type are shown.

Cell type annotation as in Figure 1F.

(E) Dotplot showing gene expression of SCENIC-

identified ZEB1 targets in T_SVZ and T_Mass

(left). Boxplot showing AUC module score of

SCENIC-identified ZEB1 target genes between

T_SVZ and T_Mass. Wilcoxon Rank-Sum test was

used to determine significance (p < 2.2E�16,

right).

(F) Pearson’s correlation analysis of regulons be-

tween monocyte-derived macrophages (MDMs)

and microglia in the T_Mass (left) and T_SVZ

(right). p < 2.2E-16 for both correlations.
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Given the different cellular dynamics in the tumor cells of

the T_SVZ compared with the T_Mass, we then performed

single-cell regulatory network inference and clustering

(SCENIC)36,37 of all T_SVZ and T_Mass samples (Figure 2D)

and of each individual sample (Figure S5) to identify the key

master regulators of the tumor cells in the T_SVZ. While the

TF and regulator of cell migration TEAD138,39 was specific to

tumor cells in the T_Mass, especially in the GBMac state (Fig-

ure 2D top left), the key mesenchymal TF ZEB140–42 was

exclusively expressed in the T_SVZ, with highest enrichment

in the GBMnpc and GBMopc states and lowest in the

GBMmes state (Figure 2D top right). This may be because

the GBMmes state was defined by genes related to wound

healing, inflammatory response, and hypoxia, among others,

but not mesenchymal processes, as recently suggested.43

Moreover, ZEB1 targets are significantly upregulated in the tu-

mor cells of the T_SVZ compared with the tumor cells of the

T_Mass (Figure 2E). Other regulons highlighted distinct regu-

latory networks in the two areas: (1) ZNF519, PKNOX2, and

TCF7L2 showed enrichment in the GBMopc state of the
4 Cell Reports 44, 115149, January 28, 2025
T_Mass. Notably, TCF7L2 is an effector

of the Wnt/b-Catenin signaling pathway

with prognostic significance in patients

with GBM44 (Figure 2D top left); (2)
ETV1, BHLHE40, and HIF1A were enriched in the T_SVZ,

with ETV1 having the highest enrichment in the GBMopc

state, whereas BHLHE40 and HIF1A were highest in the

GBMmes state, as expected for a state linked to hypoxia

genes16,43 (Figure 2D top right).

We next calculated regulon enrichment in the matched normal

cells of the T_Mass and the T_SVZ (Figure 2D bottom). Although

MDM andmicroglia of the T_Mass shared a core set of regulons,

including POU2F2, KLF1, and the regulator of macrophage dif-

ferentiation IRF8 (which confers an immunosuppressive pheno-

type in MDMs45 and promotes reactivity in microglia46), in the

T_SVZ, MDM and microglia were characterized by distinct regu-

lons, includingREL andMAFB in microglia and EOMES in MDMs

(Figure 2D bottom right), suggesting differences in the functional

roles of these immune cell populations. To further explore these

differences, we performed correlation analyses of regulons in

MDMs and microglia in the T_Mass (Figure 2F left) and in the

T_SVZ (Figure 2F right). MDM and microglia in the T_SVZ

showed a weaker correlation than the same cell populations in

the T_Mass (R = 0.68 vs. R = 0.94).
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Figure 3. Tumor-supportive microglia are the majority of TAMs in the tumor SVZ microenvironment and spatially coexist with tumor cells

(A) UMAPs of normal cell populations in the T_Mass (left) and T_SVZ (right) with proportion of each cell type in the two areas.

(B) Boxplot depicting TAMs’ abundance (monocyte-derived macrophages [MDMs] and microglia) by patient between T_Mass and T_SVZ. Wilcoxon Rank-Sum

test was used to determine significance. p = 5E�04 (left), p = 0.48 (right).

(C) MacSpectrum plots of MDMs (olive green) and Microglia (green) with percentages calculated for each quadrant in the T_Mass (left), T_SVZ (middle), and

N_SVZ (right). AMDI, Activation-induced Macrophage Differentiation Index; MPI, Macrophage Polarization Index.

(D) Upset plot depicting the number of differentially expressed genes (DEGs) in the comparisons among T_Mass, T_SVZ, and N_SVZ. The magenta, yellow, and

orange bars represent the number of DEGs that are unshared among the comparisons. The gray bars represent the shared DEGs among the indicated com-

parison.

(E) Volcano plots showing the differentially expressed genes in T_SVZ vs. T_Mass (left) and T_SVZ vs. N_SVZ (right) as whole areas, top. Volcano plots showing

the differentially expressed genes in microglia only in T_SVZ vs. T_Mass (left) and T_SVZ vs. N_SVZ (right), bottom. In all analyses, average log2(Fold

Change) > 0.3 and p < 0.05 were used.

(F) Representative images of the T_Mass (top) and T_SVZ (bottom) from tissue sections used for spatial transcriptomics. Sections of GBM7 are shown as an

example. Images of hematoxylin and eosin-stained tissues (left) and the corresponding digital images (right). Scale bar, 100 mm. Color code = minimum to

maximum total unique molecular identifier (UMI) for each sample.

(G) Dot plot of Pearson’s spatial correlation between microglia and all other cell types in T_Mass and T_SVZ of four patients. Cell types exhibiting spatial cor-

relation with microglia (y axis). GBM samples, areas and normal sample HNS1 (x axis). The dashed lines indicate the absent cell types.

(H) Bar graph showing patterns of spatial dependencies among cell types in the T_Mass (yellow) and in the T_SVZ (purple) from the same patients as in Figure 3G.

All cell types in the two areas were analyzed. Cell types exhibiting spatial dependencies (y axis) and log2 (median) of total spatial dependencies (x axis). *p < 0.05,

**p < 0.01, ***p < 0.001. NPC, neural progenitor cells; OPC, oligodendrocyte precursor cells; MDM, monocyte-derived macrophages.
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Overall, these results indicate that the T_SVZ harbors tumor

cells characterized by a ZEB1-centered mesenchymal signature

and a distinct regulon profile of microglia.

Tumor-supportive microglia are the majority of TAMs in
the tumor SVZ microenvironment and spatially coexist
with tumor cells
Our results above led us to perform functional characterization of

microglia. Initially, we visualized only clusters of normal cells

of the T_Mass and the T_SVZ and calculated the proportion of

each cell type (Figure 3A). This analysis confirmed that MDMs

represent the minority of TAMs and the least abundant normal
cell type of the T_SVZ (4.6% of total normal cells), whereas mi-

croglia were the third most abundant cell type in this area

(28.4% of total normal cells; Figure 3A right). In the T_Mass, mi-

croglia and MDMs were present in a more similar proportion

(17.7% and 12.8% of total normal cells, respectively; Figure 3A

left). Neural progenitor cells (NPCs) represent the second most

abundant cell type in the T_SVZ but were absent in the

T_Mass microenvironment. Conversely, neurons represent the

third most abundant cell type in the T_Mass but were absent in

the T_SVZ (Figure 3A).

Intrigued by the data on the proportion of each cell type in the

T_SVZ, we observed that the number of MDMs is significantly
Cell Reports 44, 115149, January 28, 2025 5
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reduced in the T_SVZ compared with the T_Mass (Figure 3B left)

and that microglia show a trend of increased abundance in the

T_SVZ compared with the T_Mass (Figure 3B right). Next, we

performed functional characterization of the microglia and

MDMs in the T_SVZ compared with matched cell populations

in the T_Mass. AlthoughM1 is typically synonymous with ‘‘proin-

flammatory/anti-tumor’’ and M2 with ‘‘anti-inflammatory/pro-tu-

mor,’’ these definitions do not fully represent the functional iden-

tity of TAMs in GBM. Thus, we used MacSpectrum47 to infer

activity of TAMs. Based on input RNA-seq count data, this

method determines the Macrophage Polarization Index (MPI)

and the Activation-induced Macrophage Differentiation Index

(AMDI), both with scores that range from �50 to 50. Instead of

a category representation, we mapped macrophage activity

onto a biological spectrum using this score-based method.

More proinflammatory traits are indicated by a higher MPI value,

while greater maturity is indicated by a higher AMDI value.

Zero was a threshold to designate ‘‘pre-activation’’ or ‘‘M0’’ cells

(AMDI < 0, MPI < 0), ‘‘M1-transitional’’ (AMDI < 0, MPI > 0) or

‘‘M1-like’’ cells (AMDI > 0, MPI > 0), and ‘‘M2-like’’ cells

(AMDI > 0, MPI < 0), as done by Li et al.47

Comparedwith the T_Mass,microglia of the T_SVZweremore

M2-like (from 6.4% to 21.4%) and less M1-like (from 75.1% to

52.8%) and showed an increase in the pre-activation state

(from 11.7% to 17.0%, Figure 3C left and middle). Similarly,

MDMs of the T_SVZ were predominantly M2-like compared

with those in the T_Mass (from 15.4% to 72.6%) and less M1-

like (from 59.7% to 27.4%, Figure 3C left and middle). Notably,

no MDMs exhibited a pre-activation state in the T_SVZ (from

19.0% in the T_Mass to 0.0% in the T_SVZ, Figure 3C left and

middle). In the N_SVZ, as expected, microglia were predomi-

nantly M1-like (69.7%) and in the pre-activation state (24.0%)

(Figure 3C right). Overall, microglia and MDMs in the T_SVZ

were prominently tumor supportive. This suggests that in the

T_SVZ, TAMs-specific mechanisms promoting tumor aggres-

siveness may represent therapeutic vulnerabilities.

To identify potentially targetable genes in the microglia of the

T_SVZ, we conducted gene expression analysis and identified

the differentially expressed genes (DEGs) in that area

compared with the T_Mass and the N_SVZ. The N_SVZ and

the T_SVZ had the highest number of unshared DEGs (662)

among the comparisons, while the T_Mass and the T_SVZ

had the lowest number of unshared DEGs (70, Figure 3D).

Moreover, the highest number of shared DEGs was found

between N_SVZ-T_Mass and N_SVZ-T_SVZ (1177 DEGs),

while the number of shared DEGs between T_Mass-T_SVZ

and N_SVZ-T_SVZ, and those between T_Mass-T_SVZ and

N_SVZ-T_Mass, were only 112 and 106, respectively. The num-

ber of shared DEGs among all three comparisons was 173 (Fig-

ure 3D). These data suggest that the T_Mass and the T_SVZ

express similar genes, while the N_SVZ is characterized by a

different gene set (Figure 3D). Notably, among the DEGs, the

CSC master regulator SOX241,48 was significantly downregu-

lated in the N_SVZ vs. T_Mass and ZEB1 was significantly

downregulated in the N_SVZ vs. T_SVZ (Figure 3E), thus sup-

porting the regulon enrichment results of tumor cells in the

T_SVZ (Figure 2D top). Moreover, TFs involved in promotion

of neuronal differentiation49 showed two distinct patterns: while
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SOX4 and SOX11 were overexpressed in the T_Mass vs.

N_SVZ and in the T_SVZ vs. N_SVZ, SOX5 was significantly up-

regulated in the N_SVZ vs. T_Mass comparison (Table S2,

comparisons as whole areas). Of note, SOX2, SOX4, and

SOX11 were upregulated in the T_Mass vs. T_SVZ, and

SOX5 was downregulated in the T_Mass vs. T_SVZ. Of note,

COL1A1 (a central gene in the dynamic organization of glioma

mesenchymal transformation50) was downregulated in the

T_Mass vs. T_SVZ, further supporting our observation that

the T_SVZ microenvironment is characterized by a mesen-

chymal signature.

When considering overexpressed genes in the T_SVZ as a

whole area (i.e., all identified cell types in this microenvironment),

SOX2 was upregulated in the T_Mass vs. T_SVZ (Figure 3E top

left). The gene encoding for the IL-1R accessory protein (IL-

1RAcP) was significantly upregulated in the T_SVZ vs. N_SVZ

(Figure 3E top right). Moreover, in addition to GFAP, CD163,

PTPRZ1, and ZEB1, we also observed that FZD3, encoding a

seven-transmembrane domain receptor of the non-canonical

WNT (ncWNT) pathway, was significantly upregulated in the

T_SVZ vs. N_SVZ and in the T_Mass vs. N_SVZ (Figure 3E top

right; Figure S6 left).

We then performed the same analysis on the microglia only

(Table S2, comparisons in microglia). The inflammatory cytokine

IL1B51–58 was significantly upregulated in the T_SVZ vs. T_Mass,

suggesting that microglia in the T_SVZ are more inflammatory

than those in the T_Mass (Figure 3E bottom left). Two other in-

flammatory cytokines were upregulated in the T_SVZ microglia:

IL15 was significantly upregulated in the T_SVZ vs. T_Mass and

in the T_SVZ vs. N_SVZ (Figure 3E bottom left and right), and

IL18 was significantly upregulated in the T_SVZ vs. N_SVZ (Fig-

ure 3E bottom right), thus confirming that T_SVZ microglia are

prominently tumor-supportive and inflammatory, consistent

with the results of MacSpectrum (Figure 3C). We confirmed

these results by analyzing gene expression of markers of ‘‘ho-

meostatic,’’ ‘‘activated,’’ and ‘‘inflammatory’’ microglia (Fig-

ure S7A). In addition to CD163, CD44, GFAP, and IL2RA, the

pro-migration and pro-invasion ncWNT ligand WNT5A59–63

was significantly upregulated in the T_SVZ vs. N_SVZ and in

the T_Mass vs. N_SVZ microglia only comparisons (Figure 3E

bottom right; Figure S6 right). Of note, high expression of

WNT5A in glioma has been correlated with increased presence

of TAMs.64 Moreover, the putative receptor of WNT5A is FZD3,

which was significantly upregulated in the T_SVZ vs. N_SVZ

and in the T_Mass vs. N_SVZwhole area comparisons (Figure 3E

top right; Figure S6 left).

These results led us to explore the spatial distribution ofmicro-

glia and tumor cells in cellular neighborhoods of the T_SVZ and

the T_Massmicroenvironments. We performed spatial transcrip-

tomics using samples from four patients of our cohort with large

enough T_SVZ and T_Mass tissues for analyses (Figure 3F). We

also profiled the HNS1 sample (one of our two N_SVZ samples).

By InferCNV, cell type annotation, and Cell2Location, we first

confirmed that most of the cells in the T_Mass and the T_SVZ

were tumor cells (except for the GBM4 samples) and that the

HNS1 contained normal cells only (Figure S7B). As expected,

we found a higher percentage of microglia and GBMmes cells

in the T_SVZ samples compared with corresponding T_Mass
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samples (Figure S7C). We then quantified the spatial correlations

for each patient and each microenvironment and we analyzed

the spatial correlations of each cell type vs. microglia and

observed different patterns of correlation in the individual pa-

tients (Figure 3G). Of note, correlation analyses of microglia in

the HNS1 sample revealed significantly weaker correlations

with all cell types (Figure 3G). We also observed different pat-

terns of correlations with tumor and normal cells between the

T_Mass and the T_SVZ of each patient (Figure S8). To perform

statistical analysis of these data and identify spatial correlations

that are significantly different between the T_SVZ and the

T_Mass microenvironments, we calculated the difference in

Pearson’s correlation and determined the significance of the dif-

ference. This analysis revealed that microglia in the T_SVZ

exhibit stronger spatial correlations with tumor cells compared

with microglia of the T_Mass (Figure S8L left). Among the four

patients, the strongest spatial correlations in the T_SVZ are

with GBMmes and GBMnpc for patient GBM4, GBMnpc for pa-

tient GBM9, and GBMopc for patients GBM7 and GBM8 (Fig-

ure S8L right). We also observed stronger spatial correlation

with MDMs and oligodendrocytes in the T_SVZ of two of the

four analyzed patients (Figure S8L left). When we examined the

patterns of spatial dependencies among cell types,65 we

observed that microglia in the T_SVZ had a high likelihood of

communication (Figure 3H) and were both sender and receiver

cells in two of the four T_SVZ samples. By contrast, in the

T_Mass samples, microglia were only receiver cells, similar to

the HNS1 sample (Figures S8M–S8U).

Altogether, these data indicate that the T_SVZ microenviron-

ment is characterized by tumor-supportive microglia that

secrete inflammatory cytokines, such as interleukin (IL)-1b, and

the pro-migration and pro-invasion ncWNT ligand Wnt-5a. Mi-

croglia in the T_SVZ exhibit stronger spatial correlations with tu-

mor cells and establish more spatial dependencies compared

with microglia of the T_Mass.

Microglia, not MDMs, establish cell-to-cell interactions
with tumor cells in the tumor SVZmicroenvironment and
are predicted to express IL-1b and Wnt-5a
The spatial coexistence of tumor-supportive, inflammatory mi-

croglia and tumor cells and the complex cell-to-cell communi-

cation network between microglia, tumor cells, and other cell

types in the T_SVZ microenvironment prompted us to further

examine their interactions. First, we annotated each identified

cluster of our snRNA-seq dataset of T_Mass, T_SVZ, and

N_SVZ to identify interactions at high resolution (Figure 4A

top). Next, we examined the total number of inferred interac-

tions. The N_SVZ had the lowest number of interactions

(221), the T_SVZ had an intermediate number (326), and the

T_Mass had the highest number (653) (Figure S9A). These find-

ings correlated with the number of identified clusters (Figure 4A)

and suggest that more heterotypic cellular microenvironments,

such as those of the T_Mass and the T_SVZ (Figure 1F bottom),

contribute to increased cell-to-cell interactions. We then

analyzed the number of the incoming and outgoing interactions

among cell types. While MDMs exhibited a cell-to-cell commu-

nication network in the T_Mass (Figure 4A bottom left), they

establish only a few, weak interactions in the T_SVZ (Figure 4A
bottom middle). In contrast, microglia established cell-to-cell

communication networks in both the T_Mass (Figure 4A bottom

left) and the T_SVZ (Figure 4A bottom middle). In the T_SVZ,

microglia showed interactions with different cell types,

including tumor cells of the GBMmes state (Figure 4A bottom

middle). These data on microglia in the T_SVZ seem to reflect

the ability of microglia in the N_SVZ to be highly interactive

within the microenvironment and establish a complex cell-to-

cell communication network with many cell types (Figure 4A

bottom right).

We next studied predicted interactions involving microglia of

the T_SVZ. First, we examined predicted interactions within

this cell type (microglia to microglia). Activity of the IL-1b –IL-

1RAcP pathwaywas strongly upregulated in ‘‘sender’’ (Figure 4B

left) and ‘‘receiver’’ (Figure 4B right) microglia in the T_SVZ

compared with microglia of the T_Mass. Specifically, in both an-

alyses the IL-1b –IL-1RAcP pathway was ‘‘down’’ in the T_Mass

compared with the T_SVZ (Figure 4B). Second, we examined all

predicted incoming (Figure S9B) and outgoing signaling patterns

in the T_Mass (Figure 4C left), the T_SVZ (Figure 4C middle), and

the N_SVZ (Figure 4C right). Among the incoming signaling path-

ways of microglia in the T_SVZ, Sema3 and Annexin had the

highest relative strength and were specific to this area compared

with the T_Mass and the N_SVZ (Figure S9B). Consistent with

the DEG analysis (Figure 3E bottom), among the outgoing

signaling pathways of microglia in the T_SVZ, ncWNT exhibited

the highest relative strength and was specific to this area

compared with the T_Mass and the N_SVZ (Figure 4C middle).

Of note, ncWNT was also an incoming signaling pathway spe-

cific of T_SVZ and exhibited the highest relative strength in clus-

ters of the GBMnpc and GBMopc states (Figure S9B), suggest-

ing a ncWNT-mediated interaction between microglia and tumor

cells in the T_SVZ.

We then performed ligand-receptor prediction analyses be-

tween microglia as sender cells and any other cell type of the

T_SVZ as receiver cells. WNT5A is a predicted ligand of micro-

glia, and its predicted receptors areMCAM and FZD3 expressed

by endothelial cells and tumor cells of the GBMopc andGBMnpc

states, respectively (Figure 4D top). These WNT5A-related pre-

dictions were specific to the T_SVZ and absent in the T_Mass

(Figure 4D bottom; Figures S9C–S9E), in agreement with the

incoming and outgoing signaling analyses in the T_SVZ (Fig-

ure 4C middle; Figure S9B). The SPP1-CD44 ligand-receptor

combination had the highest communication probability be-

tween microglia and tumor cells of the GBMmes state in the

T_SVZ (Figure 4D top), between microglia, MDMs, and tumor

cells of the GBMac and the GBMmes states in the T_Mass (Fig-

ure 4D bottom; Figures S9C and S9D), and between microglia

and astrocytes in the N-SVZ (Figure S9E). This is consistent

with published work showing that (1) SPP1-CD44 signaling is

present in the glioma perivascular niche,66 (2) SPP1 is upregu-

lated67 and secreted by TAMs in glioma,68 and (3) SPP1-CD44

signaling is between TAMs and glioma cells,69 specifically with

GBMmes tumor cells.70

Overall, our results revealed that microglia in the T_ SVZ

establish cell-to-cell interactions within their cell population

and with tumor cells and identify microglia-specific pathways

of communications.
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Figure 4. Microglia, not MDMs, establish cell-to-cell interactions with tumor cells in the tumor SVZ microenvironment and are predicted to

express IL-1b and Wnt-5a

(A) Incoming and outgoing interactions in the cell-to-cell communication network. Number of interactions between any two cell types shown as circle plots for the

T_Mass (top left), T_SVZ (top middle), and N_SVZ (top right). Heatmaps showing the cell-to-cell interactions of microglia and MDM with the other cell types and

with themselves for the T_Mass (bottom left), T_SVZ (bottommiddle), andN_SVZ (bottom right). NoMDMswere present in theN_SVZ, hence only the heatmap for

microglia is shown. Color code indicates the log2 (counts) between 0 and 3.

(B) Heatmaps showing the predicted interactions between sender (left) and receiver (right) cells in the microglia cluster of the T_SVZ. Color code indicates the

scaled ligand activity in receiver (SLAR) cells.

(C) Heatmaps of outgoing signaling pathways in the T_Mass (left), T_SVZ (middle), and N_SVZ (right). Color code indicates minimum tomaximum strength of each

signaling pathway.

(D) Dot plots of ligand-receptor prediction analysis betweenmicroglia as ligand-expressing (‘sender’) cells and any other cell types (‘receiver’, x axis) in the T_SVZ

(top) and in the T_Mass (bottom). Dots indicate p < 0.01, color code = minimum to maximum probability. NPC, neural progenitor cells; OPC, oligodendrocyte

precursor cells; MDM, monocyte-derived macrophages.
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Functional validation of IL-1b/IL1RAcP and Wnt-5a/
Frizzled-3 expression in the tumor SVZ
Based on our results revealing that IL1B and WNT5A are signif-

icantly upregulated in the T_SVZ microglia vs. T_Mass and

N_SVZ, respectively (Figure 3E bottom left and right), and that

their predicted receptors IL1RAP (Figure 4B) and FZD3 (Fig-

ure 4D top) are also significantly upregulated in the T_SVZ vs.

N_SVZ comparison as whole areas (Figure 3E top right), we

next performed functional studies of the IL-1b/IL-1RAcP and

Wnt-5a/Frizzled-3 pathways.

First, we defined the cell type expression ofWNT5A, IL1B (Fig-

ure 5A top), and of FZD3, IL1RAP (Figure 5A bottom) in the

T_SVZ. While WNT5A and IL1B were almost exclusively ex-

pressed by microglia (Figure 5B), FZD3 was predominantly ex-

pressed by tumor cells of the GBMnpc and GBMopc states,

and IL1RAP was predominantly expressed by tumor cells of

those two states and microglia (Figure 5B). The cell type expres-

sion of WNT5A, IL1B, FZD3, and IL1RAP in the T_SVZ overlap-
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ped only partially with the expression of the same genes in the

T_Mass and the N_SVZ (Figure S10A).

Second, similar to previous work on the role of TAMs in human

gliomas, we isolated TAMs using the cd11b enrichment strategy

based on immunomagnetic microbeads decorated with recom-

binantly engineered antibody fragments (Figure 5C) and quanti-

fied the levels ofWnt-5a (Figure 5D top) and IL-1b (Figure 5D bot-

tom) secreted by TAMs of matched T_Mass and T_SVZ of four

patients. Using immunofluorescence staining, we confirmed

that Frizzled-3 (Figure 5E) and IL-1RAcP (Figure 5F left) are ex-

pressed by CSCs. For IL-1RAcP, we also confirmed expression

at the level of TAMs (Figure 5F right). By staining quantification

based on fluorescence intensity, we observed a significantly

higher expression of Frizzled-3 in the CSCs isolated from the

T_SVZ compared with matched CSCs of the T_Mass (Figure 5E).

IL-1RAcP stainings of CSC and TAMs isolated from the T_SVZ

and compared with matched T_Mass-derived cells showed a

trend toward higher expression in the T_SVZ, and in the case
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Figure 5. Functional validation of IL-1b/IL1RAcP and Wnt-5a/Frizzled-3 expression in the tumor SVZ

(A) Kernel density estimation UMAPs of the T_SVZ showing expressions ofWNT5A, IL1B (top left) and FZD3, IL1RAP (bottom left). Cell type annotation of these

UMAPs showing the relevant cell types (right).

(B) Dot plot showing cell type expression of WNT5A, IL1B, FZD3, and IL1RAP in the T_SVZ.

(C) Schematic of the cd11b enrichment strategy for isolation of tumor-associated macrophages (TAMs). Created with BioRender.com.

(D) Bar graph of estimatedWnt-5a (top) and IL-1b (bottom) secreted from the TAMs isolated from the T_Mass and the T_SVZ of GBM4, 7, 17, and 23 (the latter only

for IL-1b; mean ± SEM).

(E) Representative images (left) and staining quantification by fluorescence intensity mean value (right) of cancer stem-like cells (CSCs) isolated from GBM7 (top)

and GBM23 (bottom), stained for Frizzled-3 and counterstained with DAPI. Scale bars, 50 mm. **p < 0.01, ****p < 0.0001 T_Mass-vs. T_SVZ-derived cells.

(F) Representative images and staining quantification by fluorescence intensity mean value of CSCs (left) and TAMs (right) isolated from GBM4 (top) and GBM7

(bottom), stained for IL1-RAcP and counterstained with DAPI. Scale bars, 50 mm. ****p < 0.0001 T_Mass-vs. T_SVZ-derived cells.

Article
ll

OPEN ACCESS
of TAMs derived from GBM7, the increased expression of IL-

1RAcP in the T_SVZ was statistically significant (Figure 5F right).

Control stainings (Figure S10B) and control lines, namely the

GBM cell line T98G and two commercial cell lines of MDMs

and microglia, were stained for Frizzled-3 (T98G, Figure S10C)

and IL1-RAcP (T98G, MDM and microglia, Figures S10D and

S10E). Of note, the expression of IL-1RAcP in T98G, MDMs,

and microglia (Figures S10D and S10E) was lower compared

with CSCs and TAMs derived from the T_SVZ (Figure 5F).

IL-1b/IL-1RAcP and Wnt-5a/Frizzled-3 are potential
therapeutic targets in the tumor SVZ microenvironment
Given the recognized inflammatory and tumor-supportive role of

IL-1b,51–58 and the pro-migration and pro-invasion functions of

Wnt-5a,59–63 we surmised that strategies to target these two

pathways could reveal therapeutic vulnerabilities in the T_SVZ

microenvironment. Therefore, we tested the effects of IL-1b/IL-

1RAcP and Wnt-5a/Frizzled-3 inhibition in vitro.

To evaluate the impact of IL-1b/IL-1RAcP inhibition in TAMs,

isolated cd11b-enriched cells from matched T_SVZ and the

T_Mass of two patients were treated for 48 h with the anti-IL-

1RAcP fully humanized monoclonal antibody nidanilimab

(recently renamed as Nadunolimab-CAN04, and currently being
tested in multiple clinical trials71–73). We observed significantly

reduced IL-1b secretion in nidanilimab-treated TAMs of the

T_SVZ in GBM4 (Figure 6A top) and in both the T_Mass and

the T_SVZ of GBM7 (Figure 6A bottom). Next, we evaluated

the impact of IL-1b/IL-1RAcP inhibition on CSCs. Proliferation

of CSCs isolated from the T_Mass and the T_SVZ was signifi-

cantly reduced after treatment with IL-1b and nidanilimab (Fig-

ure 6A right) but not with nidanilimab alone (data not shown),

with a more pronounced effect in the T_SVZ compared with

T_Mass (Figure 6A right). These data suggest that mimicking

the secretion of IL-1b by TAMs is critical for IL-1b/IL-1RAcP inhi-

bition. To test the impact of Wnt-5a/Frizzled-3 inhibition, we per-

formed in vitro transwell experiments using CSCs isolated from

the T_Mass and the T_SVZ of three patients. Initially, TAMs iso-

lated from matched T_SVZ and the T_Mass of the three patients

were treated for 48 h with Box5, a Wnt-5a antagonist. Notably,

secretion of Wnt-5a was significantly reduced upon Box5 treat-

ment of TAMs isolated from the T_SVZ (Figure 6B left), suggest-

ing that Box5 may inhibit the Wnt-5a-induced calcium signaling

and/or cytokine secretion, as previously described in models of

melanoma.74–76 Exposure of CSCs to conditioned medium of

treated or untreated TAMs with Box5 significantly reduced

CSC invasion through the transwell (Figure 6B right). In all the
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B Figure 6. IL-1b/IL1RAcP and Wnt-5a/

Frizzled-3 are potential therapeutic targets

in the tumor SVZ microenvironment

(A) Truncated violin plots of estimated secreted IL-

1b by tumor-associated macrophages (TAMs) iso-

lated from T_Mass and T_SVZ of GBM4 (top)

and GBM7 (bottom) after nidanilimab treatment.

*p < 0.05, **p < 0.01 (left). Growth curve analysis

(mean ± SEM) of cancer stem-like cells (CSCs)

isolated from T_Mass and T_SVZ of GBM4 (top) and

GBM7 (bottom) and treated with IL-1b and IL-

1b+nidanilimab (right). Nonlinear regression anal-

ysis was performed to assess the proliferative po-

tential. *p < 0.05, **p < 0.01, ***p < 0.001,

****p < 0.0001 IL-1b vs. IL-1b+nidanilimab.

(B) Truncated violin plots of the estimated secreted

Wnt-5a by TAMs isolated from T_Mass and T_SVZ

of GBM4 and 7 after treatment with Box5. *p < 0.05

(left). Quantification of cell migration based on

absorbance of eluted crystal violet used in transwell

assays of CSCs isolated from T_Mass and T_SVZ

and exposed to conditioned medium of matched

TAMs treated with Box5 (right). The results shown

here are from GBM7 (top right) and GBM17 (bottom

right). *p < 0.05, ***p < 0.001, ****p < 0.0001.

(C) Correlation between IL1RAP expression levels

and patient survival in the TCGA (Affymetrix plat-

form: mesenchymal; unmethylated, p = 0.0479, top

and proneural, p = 0.0379, bottom).

(D) Correlation between FZD3 expression levels and

patient survival in the Gravendeel’s77 (mesenchymal, p = 0.0467, top) and Rembrandt’s78 datasets (non G-CIMP, p = 0.0297, bottom). The survival analyses in

(C) and (D) were performed using the GlioVis data portal.79
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analyzed samples, the cells from the T_SVZ consistently showed

a significant response to Box5 treatment. However, we also

observed a significant reduction in invasion in the CSCs from

the T_Mass of GBM7 (Figure 6B right).

To evaluate the clinical significance of our findings, we used

public GBM datasets77,78,80–83 and performed analysis of overall

survival based on the expression levels of IL1RAP and FZD3.

High expression of IL1RAP and FZD3 was associated with

shorter survival in the TCGA samples (Affymetrix platform,

mesenchymal; unmethylated and proneural subtypes, Fig-

ure 6C), and in the Gravendeel’s77 (mesenchymal subtype) and

Rembrandt’s78 (non G-CIMP) datasets, respectively (Figure 6D).

Altogether, these results indicate that the IL-1b/IL-1RAcP

and Wnt-5a/Frizzled-3 represent therapeutic targets in the

T_SVZ and have prognostic relevance in subsets of patients

with GBM.

DISCUSSION

Webuilt a single-nucleus RNA-sequencing-basedmicroenviron-

ment landscape of the T_SVZ using samples from 15 patients

with GBM.We comprehensively compared T_Mass samples iso-

lated from the same patients and used two histologically normal

SVZ samples as controls. We identified a ZEB140–42-centered

mesenchymal signature in the T_SVZ and a tumor-supportive

microglia population, which represent the vast majority of

TAMs in the T_SVZ microenvironment. These cells spatially

coexist and establish cell-to-cell interactions with tumor cells.

We systematically characterized these interactions both in silico
10 Cell Reports 44, 115149, January 28, 2025
and in vitro and identified two pathways, IL-1b/IL-1RAcP and

Wnt-5a/Frizzled-3, representing potential targets in the T_SVZ

microenvironment.

Collectively, our findings indicate that the SVZ represents a

distinct microenvironment in patients, which is deprived of the

GBMac state, is characterized by a mesenchymal signature,

and is enriched in tumor-supportive and inflammatory microglia.

Moreover, our study identifies potential therapeutic targets in the

T_SVZ of patients with GBM.

While it is well recognized that (1) IL-1b is among the most

well-characterized inflammatory cytokines in GBM, (2) TAMs

secreting IL-1b support tumor growth,51–58 and (3) microglia

(among other cell types) are enriched in an IL-1b inflammatory

program,84 it was still unknown whether TAMs secrete Wnt-5a

and if aWnt-5a-mediated crosstalk exists between TAMs and tu-

mor cells. However, in addition to the known pro-migration and

pro-invasion functions of Wnt-5a,59–63 it has been reported that

the expression of Wnt-5a in human glioma is positively corre-

lated with the presence of TAMs.64

Our results show that in vitro targeting of the IL-1b/IL-1RAcP

and Wnt-5a/Frizzled-3 pathways significantly reduces the ability

of CSCs of the T_SVZ to proliferate and migrate. Moreover, our

analysis of overall survival using public GBM datasets reveals

that IL1RAP and FZD3 have prognostic relevance in subsets of

patients. Of note, inhibition of the IL-1b/IL-1RAcP pathway

with the anti-IL-1RAcP fully humanized monoclonal antibody

Nadunolimab-CAN04 is being evaluated in multiple clinical trials

of colorectal cancer, non-small cell lung cancer, pancreatic can-

cer, triple-negative breast cancer,71–73 and biliary tract cancer
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(https://cantargia.com/en/press-releases/cantargia-reports-

treatment-of-first-triple-negative-breast-cancer-patient-in-

trifour-study).

Given the limited efficacy of current treatments for patients

with GBM, our results provide evidence of potential thera-

peutic opportunities to target the T_SVZ microenvironment.

Specifically, inhibiting the IL-1b/IL-1RAcP or the ncWNT

(Wnt-5a/Frizzled-3) pathways in the T_SVZ can lead to the

reduction of the highly proliferative ability and widespread

infiltration of GBM cells in the brain parenchyma.85 Such

an approach could also be combined with strategies aimed

at controlling key functional properties of CSCs (self-

renewal, chemo-/radio-resistance, metabolic plasticity, sur-

vival, etc.) by targeting core intrinsic and extrinsic regulatory

networks supporting their stemness and/or by inducing

differentiation.

Although microglia undergo changes in gene expression

from ‘‘homeostatic’’ to ‘‘activated’’ in diseases of the central

nervous system, their diversity and functional roles in human

GBM are not fully understood.86,87 Specifically, their role in

spatially distinct GBM microenvironments is still unknown.

Recent work identified associations between microglia and

the GBMac state.88 Moreover, microglia were found to be en-

riched in GBM showing no ventricular contact.89 However,

these studies were not performed on samples taken directly

from the SVZ of patients.

By distinguishing between MDMs and microglia, elegant

works on the brain tumor microenvironment started to uncover

the phenotype of microglia in IDH wild-type/mutant gliomas,

and in brain metastases20,21 and suggested that microglia

exhibit an ‘‘activated’’ phenotype in GBM. In addition, two inde-

pendent groups have shown that in GBM, subsets of microglia

upregulate inflammatory (including IL1B) and proliferative

genes56 and are characterized by VEGF- and CD163-express-

ing cells,90 suggesting a tumor-supportive function whose

mechanisms are still unknown. Future work focused on eluci-

dating the functional role of microglia and their cellular interac-

tions in key areas for the emergence of the recurrent tumor,

such as the SVZ, will have important implications for devel-

oping effective therapeutic strategies.

Limitations of the study
Our work has some limitations: we have not analyzed the

cellular cross-talks mediated by IL-1b and Wnt-5a in other lin-

eages. Specifically, our work is limited to the interactions be-

tween microglia and tumor cells in the T_SVZ. Moreover, we

have not evaluated the therapeutic efficacy of inhibiting the

IL-1b/IL-1RAcP or the ncWNT (Wnt-5a/Frizzled-3) pathways

in vivo. While inhibition of secreted factors can be challenging

due to the dynamics of secretion and the cross-talks between

different cell types, disruption of cellular interactions at the

level of receptors through blocking antibodies could be a suc-

cessful approach to develop effective therapies for patients

with GBM. Of note, our patient cohort was not powered for

the analysis of sex-related differences. Future work will eval-

uate the therapeutic efficacy of inhibiting the IL-1b/IL-1RAcP

and the ncWNT (Wnt-5a/Frizzled-3) pathways in a sex-specific

manner.
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Visium Human Transcriptome Probe Kit 10x Genomics Cat. No. PN-1000363

NEBNext� UltraTM II Q5� Master Mix New England BioLabs Cat. No. M0544
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Rembrandt Published dataset Madhavan et al.78 GEO: GSE68848

Gravendeel Published dataset Gravendeel et al.77 GEO: GSE16011

Murat Published dataset Murat et al.81 GEO: GSE7696

Lee Published dataset Lee et al.82 GEO: GSE13041

CGGA Published dataset Zhao et al.83 SRA: SRP027383 and SRP091303

Scripts This paper https://doi.org/10.5281/zenodo.14183518

Experimental models: Cell lines
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Collection (ATCC CRL-1690)

RRID:CVCL_0556
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monocyte-derived

PromoCell Cat. No. C-12915
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software/cell-ranger/latest

CellBender (V.0.2.0) https://cellbender.readthedocs.io/en/latest/

Gencode Genome and Annotations Frankish et al.92 hg38, gencode.v42

Seurat (V.4.3.0) Hao et al.93 https://github.com/satijalab/seurat

Seurat/CellCycleScoring Kowalczyk et al.94 https://github.com/satijalab/seurat

scDblFinder (V.1.12.0) Germain et al.95 https://github.com/plger/scDblFinder

SCTransform (V.2) Choudhary et al.96 https://github.com/satijalab/seurat

scType Ianevski et al.97 https://github.com/IanevskiAleksandr/sc-type

Harmony (V.0.1.1) Korsunsky et al.98 https://github.com/immunogenomics/harmony

InferCNV Durante et al.32 https://github.com/broadinstitute/infercnv

SCPubr (V.2.0.1) https://github.com/enblacar/SCpubr

LIBRA (V.1.0.0) Squair et al.99 https://github.com/neurorestore/Libra

CellChat (V.1.4.0) Jin, S et al.100 https://github.com/sqjin/CellChat

LIANA (V.0.1.12) Dimitrov et al.101 https://github.com/saezlab/liana/

MultiNicheNet Browaeys et al.102 https://github.com/saeyslab/multinichenetr

clusterProfiler Yu et al.103 https://github.com/YuLab-SMU/clusterProfiler

MacSpectrum (V.1.0.1) Li et al.47 https://macspectrum.uconn.edu/

ShinyCellPlus https://github.com/BioinformaticsMUSC/

ShinyCellPlus

Space Ranger (V.2.0.1) https://www.10xgenomics.com/support/

software/space-ranger/latest

Squidpy (V.1.3.1) Palla et al.104 https://github.com/scverse/squidpy

Seurat (spatial analysis) (V.4.9.9.9045) Hao et al.93 https://github.com/satijalab/seurat

SpatialInferCNV (V.1.0.1) Erickson et al.105 https://github.com/aerickso/SpatialInferCNV

Cell2Location (V.0.1.3) Kleshchevnikov et al.106 https://github.com/BayraktarLab/cell2location

NCEM (V.0.1.5) Fischer et al.65 https://github.com/theislab/ncem

pySCENIC (V.0.12.1) Van de Sande et al.37 https://github.com/aertslab/pySCENIC
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Velocyto (V.0.17.17) La Manno et al.107 https://github.com/velocyto-team/velocyto.py

scVelo (V.0.2.5) Bergen et al.108 https://github.com/theislab/scvelo

CellRank2 (V.2.0.2) Weiler et al.35 https://github.com/theislab/cellrank

CellRank (V.1) Lange et al.34 https://github.com/theislab/cellrank

GPCCA Reuter et al.109 https://github.com/msmdev/pyGPCCA

MAGIC van Dijk et al.110 https://github.com/KrishnaswamyLab/MAGIC

IonTorrent Alignment https://github.com/iontorrent/TS/tree/master

Ion Torrent Variant calling https://github.com/iontorrent/TS/tree/master

SNP EFF (V.4.3.1t) Cingolani et al.111 https://github.com/pcingola/SnpEff

ZEN (blue edition) ZEISS N/A

GraphPad Prism (V. 10.3.1.509) GraphPad https://www.graphpad.com/

Other

Qubit 2.0 Fluorometer Thermo Fisher Scientific Cat. No. Q32866

ZEISS Convivio microscope ZEISS N/A

ZEISS Blue 400 filter ZEISS N/A

2100 Bioanalyzer Agilent Cat. No. G2939BA

Ion ChefTM Instrument Thermo Fisher Scientific Cat. No. 4484177

Ion S5 XL System Thermo Fisher Scientific Cat. No. A27214

Singulomics Singulomics

Corporation (Bronx NY)

https://singulomics.com/

Chromium Controller 10x Genomics N/A

NovaSeq 6000 Sequencing System Illumina Cat. No. 20012850

G4 Sequencing platform Singular Genomics https://singulargenomics.com/g4/

MiniMACSTM Separator Miltenyi Biotec Cat. No. 130-042-102

MACS� MultiStand Miltenyi Biotec Cat. No. 130-042-303

MS Columns Miltenyi Biotec Cat. No. 130-042-201

LSM 900 Confocal Microscope ZEISS N/A

Corning� Transwell� 6 well plates Millipore Sigma Cat. No. CLS3428

GlioVis data portal Bowman et al.79 http://gliovis.bioinfo.cnio.es/

3D genomics 3D genomics https://3dgeno.com/

Aperio AT2 DX System Leica Biosystems N/A

Arveo 8 Surgical microscope Leica Biosystems N/A
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Glioblastoma patient samples
Patient informed consent was obtained through the Neurosurgery Clinics at the University of New Mexico Hospitals and at the Uni-

versity of Mississippi Medical Center. Tissue collection protocols were IRB-approved (Human Research Review Committee 1). Pa-

tient clinical and molecular information is provided in Table S1A.

Establishment and propagation of patient-derived cancer stem-like cells
Cancer stem-like cells (CSCs) from the tumor mass (T_Mass) and the tumor subventricular zone (T_SVZ) tissues of the patients

included in this study were established as described previously4 and propagated in vitro using growth factor-enriched, serum-

free cell culture medium based on Neurobasal-A Medium, minus phenol red (Thermo Fisher Scientific, Cat. No. 12349015), N2 Sup-

plement (Thermo Fisher Scientific, Cat. No. 17502048), B-27 Supplement, minus vitamin A (Thermo Fisher Scientific, Cat. No.

12587010), human bFGF (Thermo Fisher Scientific, Cat. No. PHG0261), human EGF (Thermo Fisher Scientific, Cat. No.

PHG6045) and Pen/Strep/Glutamine (Thermo Fisher Scientific, Cat. No. 10378016).

Establishment of patient-derived tumor-associated macrophages
Tumor-associated macrophages (TAMs) from the T_Mass and the T_SVZ were established as described in the ‘cd11b enrichment’

section of the ‘Method details’.
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METHOD DETAILS

5-ALA administration and patient sample collection
Patients were administered with 5-Aminolevulinic acid (5-ALA) (Medexus Pharmaceuticals Inc.) 2–3 h before surgery as an oral dose

of 20mg/kg as described previously.112,113 For detection of glioblastoma tissue, protoporphyrin IX (PpIX) was excitedwith blue-violet

light (wavelength 375–400 nm) and fluorescence emission was read at 600–700 nm using the Arveo 8Microscope (Leica Biosystems)

or ZEISS Blue 400 filter using Convivio microscope (Zeiss). ‘Fluorescence’ was defined as ‘visible fluorescence using the operating

microscope’. Tissue was either lava orange (areas of high tumor cellularity), bleeding pink edge (infiltrating edge) or it was non-fluo-

rescent. Tumor mass (T_Mass) and Tumor SVZ (T_SVZ) samples were defined as visibly pink/lava orange (5-ALA+) and distinguished

from the non-fluorescent (5-ALA-) margin and necrotic tissue, as previously described.4 5-ALA+ tumor samples from the tumor mass

were taken using image guidance to identify their spatial localization. 5-ALA+ SVZ samples were collected based on anatomical loca-

tion with entry into the ventricular space. An approximately 5mm tissue including ventricular ependyma was collected as the SVZ

sample. Physical distance from the SVZ to the tumor mass was different among patients and depended on tumor location, but in

all cases, the SVZ was sampled only when fluorescence was present in the ependymal layer. Two normal SVZ (N_SVZ) samples

were collected as controls from two individuals: one SVZ was collected postmortem and the other during tumor surgical resection.

Genomic DNA sequencing
Genomic DNA extraction from glioblastoma tissues was performed using the DNeasy Blood & Tissue Kit (Qiagen, Cat. No. 69506). To

perform targeted gene sequencing the AmpliSeq Cancer Hotspot Panel v2 (Thermo Fisher Scientific, Cat. No. 4475346), which

covers approximately 2,800 COSMIC mutations in 50 genes, was used. Libraries were prepared using Ion AmpliSeq Library Kit

2.0 (Thermo Fisher Scientific, Cat. No. 4480441) and Ion XPress Barcode Adapters (Thermo Fisher Scientific, Cat. No. 4471250)

following the manufacturer’s instructions. GBM samples were amplified using 10 ng of input DNA. Libraries were purified and

size-selected using Agencourt AMPure XP beads (Beckman Coulter, Cat No. A63880), quantified using the Qubit 2.0 Fluorometer

(Thermo Fisher Scientific, Cat. No. Q32866) and Agilent 2100 Bioanalyzer (Agilent, Cat. No. G2939BA), and diluted to 50 p.m. Diluted

libraries were loaded onto Ion 550 chips using an Ion Chef instrument and sequenced on the Ion S5 XL (Thermo Fisher Scientific).

Mutation, copy-number and gene expression data
The VCF files from the Ion Torrent Variant Caller were annotated using SNPEFF v4.3.1t1.Mutationswith allele frequencies below 0.05

were filtered out, as well as nonsensemutations and thosewith known non-pathogenic variants. For analysis of the genetic drivers for

each sample, any mutations for genes CDKN2A, PDGFRA, and TP53 were plotted in a heatmap along with gene expression and

copy-number data for the same genes along with EGFR and NF1. The copy-number data were obtained from InferCNV2, averaged

for each sample, and Z-scored. The gene expression data of each genetic driver were derived from the single-nucleus RNA-

sequencing data, averaged for each sample, and Z-scored.

Single-nucleus RNA-sequencing
Single-nucleus RNA-sequencing and analysis were conducted by Singulomics Corporation (https://singulomics.com/, Bronx NY). In

summary, frozen human tissue samples were homogenized and lysed with Triton X-100 in RNase-free water for nuclei isolation. The

isolated nuclei were purified, centrifuged, and resuspended in PBS with BSA and RNase Inhibitor. The nuclei were diluted to 700

nuclei/mL and loaded to 10x Genomics Chromium Controller to encapsulate single nuclei into droplet emulsions following the man-

ufacturer’s recommendations (Pleasanton, CA, United States). Library preparation was performed according to the instructions in the

Chromium Next GEM 30 Single Cell Reagent kit v3.1. Amplified cDNAs and the libraries were measured by Qubit dsDNA HS assay

(Thermo Fisher Scientific, Wilmington, DE) and quality was assessed by BioAnalyzer (Agilent Technologies, Santa Clara, CA). Li-

braries were sequenced on a NovaSeq 6000 instrument (Illumina, San Diego, CA, United States), and reads were subsequently pro-

cessed using 10x Genomics Cell Ranger analytical pipeline and human GRCh38 reference genome with introns included in the anal-

ysis. Dataset aggregation was performed using the cellranger aggr function normalizing for the total number of confidently mapped

reads across libraries. Specifically, raw base call (BCL) files were analyzed using CellRanger (v7.0.0).91 The ‘‘mkfastq’’ commandwas

used to generate FASTQ files and the ‘‘count’’ command was used to generate raw gene-cell expression matrices. Ambient RNA

contamination was inferred and removed using CellBender (v0.2.0) with standard parameters. Human genome hg38 was used for

the alignment and gencode.v42 gtf file was used for gene annotation and coordinates.92 Data from the three areas (N_SVZ,

T_SVZ, and T_Mass) were analyzed individually and subsequently integrated. Samples from patients were combined in R using

the Read10X function from Seurat package(v4.3.0),93 and an integrated Seurat object was generated. Filtering was conducted by

retaining cells that had unique molecular identifiers less than 25000 and had mitochondrial content less than 5 percent. Doublets

were removed using scDblFinder (v1.12.0).95 To account for biological and technical batch differences between patients, we

used SCTransform. This approach was used for count normalization, initial integration, and to identify highly variable genes.114

We further removed batch effect between the single-cell transcriptome expression matrices of the filtered high-quality cells using

Harmony (v0.1.1).98 3000 variable geneswere selected for principal components analysis (PCA). The top 30 significant principal com-

ponents (PCs) and a resolution of 0.3 for Louvain clusteringwere selected for UniformManifold Approximation and Projection (UMAP)

and visualization of gene expression. Cluster markers were identified using FindAllMarkers using the Wilcoxon Rank-Sum test with
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the standard parameters. N_SVZ is from two patients HNS1 and HNS2 with a total of 19988 protein coding genes and 8772 cells.

T_SVZ is from 12 patients GBM7B, GBM8B, GBM9B, GBM10B, GBM12B, GBM16B, GBM17B, GBM20B, GBM22B, MIS1B,

MIS2B, MIS3B with a total of 19988 genes and 37360 cells. T_Mass is from 14 patients GBM7A, GBM8A, GBM9A, GBM10A,

GBM12A, GBM14A, GBM16A, GBM17A, GBM18A, GBM20A, GBM22A, MIS1A, MIS2A, MIS3A with a total of 19988 protein-coding

genes and 67801 cells. For N_SVZ Cell annotation was performed using two different approaches: 1) scType, an ultrafast unsuper-

vised method for cell type annotations,97 and 2) Manual curation by markers to reflect the prediction results. The three areas were

subsequently integrated with Harmony (v0.1.1)98 using 30 PCA and 3000 most variable genes.

Definition of malignant cells
Putativemalignant cells were identified using InferCNV analysis32 with the following parameters - denoise TRUE, default HiddenMar-

kovModel (HMM) settings, and a value of 0.1 for ‘‘cutoff’’ and the N_SVZ clusters were used are reference. Each CNVwas annotated

to be either a gain or a loss. Tumor cell clusters were classified based on the cell states by Neftel et al.16 using their meta module

markers and SCpubr (V2.0.1) was used to visualize the resultant enrichment. The clusters that showed an enrichment for a cell

state were labeled as GBMopc (OPC-like), GBMac (AC-like), GBMmes (MES-like), GBMnpc (NPC-like), other clusters that either

showed enrichment for two or more cell states or no enrichment for any cell state were labeled as GBMcc (CancerCell).

Normal cells were manually curated by using canonical markers: Astrocytes - "GFAP","AQP400, Microglia - "MEF2C","P2RY1200,
Neurons -"SYNPR","CNR100, "SYT100, Oligodendrocytes - "MOG","MBP", OPC - "VCAN","SOX500, Endothelial - "VWF","ABCB100,
Ependymal - "SPARCL100,"S100B".

Cellular dynamics
Cellular dynamics were analyzed using CellRank v2.0.235 and CellRank v1.34 Each area’s dataset was preprocessed using the RNA

Velocity steps along with gene imputation using MAGIC,110 a required step for CellRank. This imputation step was performed using

Scanpy’s implementation of MAGIC. For each area (T_Mass and T_SVZ), a Velocity Kernel was computed separately for tumor and

normal cells using all genes in each dataset. A GPCCA115 estimator was used to compute macrostates, including the initial and ter-

minal ones for each subset. The number of macrostates was determined using Cellrank’s Schurr decomposition method, using an

elbow plot heuristic; 5 states were selected for T_Mass normal cells, and 6 states were chosen for each of the T_Mass tumor cells,

T_SVZ normal cells, and T_SVZ tumor cells. Fate probabilities were computed using the ‘direct’ solver with ‘use_petsc’ set to True.

The ‘ilu’ preconditioner was also used in this step. This analysis produces a transitionmatrix, which contains the likelihood of each cell

transitioning to another; this matrix is clustered to determinemacrostates. From thesemacrostates, the one with the lowest incoming

transition likelihoods is assigned as the initial macrostate. The macrostate(s) with the highest incoming or self-transition probabilities

are labeled as terminal macrostates. To create heatmaps, a GAMmodel with 6 knots was used, and the genes selected for the heat-

map correspond to the transcription factors with the top 10 regulon specificity scores per cell class.

Gene regulatory networks
Transcription factor regulatory networks were computed using pySCENIC (v0.12.1).37 All the T_Mass samples and the T_SVZ sam-

ples were divided into sections containing only tumor and normal cells respectively, and each of these four datasets was processed

separately. The gene regulatory networks were computed using the grn algorithm for each subsample. The ctx method was then run

to find enriched motifs using the hg38_10kbp up/down and hg38_500bp up/downmotif feather databases downloaded from https://

resources.aertslab.org/cistarget/. Last, the aucell method was run to calculate regulome enrichment for each cell in each dataset.

With these data, the z-scores of the cellular regulome enrichment scores were calculated and depicted in a heatmap to compare

relative regulatory activity between datasets. Regulon specificity scores were calculated using the ‘regulon_specificity_scores’ func-

tion from pySCENIC according to the ‘Cell_Class’ annotations. The same method was also used for the analysis of T_Mass and

T_SVZ of each individual patient.

Identification of differentially expressed genes
Genes differentially expressed were calculated between N_SVZ vs. T_SVZ, N_SVZ vs. T_Mass, and T_SVZ vs. T_Mass as a whole

area. The R package LIBRA (v1.0.0) was used to perform a Wilcoxon Rank-Sum test.99 Genes were defined as significantly differ-

entially expressed at Benjamini–Hochberg correction FDR<0.05 and absolute value of fold change (log2(Fold Change))>0.3.

Expression analysis of the SCENIC-identified ZEB1 targets
AddModuleScore() function from Seurat R package was used to find average expression levels on single-cell level for the SCENIC

identified ZEB1 targets. Aggregate scores of T_SVZ and T_Mass were plotted in boxplots. Statistical significance was determined

using a Wilcoxon Rank-Sum test.

Cell-cell interaction analysis
Intercellular communication network analysis was performed by using the standard workflow of the R package ‘CellChat’ (v1.4.0)100

with the CellChatDB.human database to assess the primary signaling inputs and outputs. Ligand-receptor analysis framework LIANA

(v0.1.12),101 based on the consensus rank aggregate score calculated combining multiple algorithms as NATMI, iTalk, Connectome,
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SingleCellSignalR, and CellphoneDB, was used to detect interactions between microglia with other tumor cells in each area.

MultiNicheNet (https://github.com/saeyslab/multinichenetr) package was used to find the differences in communication of microglia

cells in T_SVZ and T_Mass.

Pathway and MacSpectrum analyses
The functional annotation of the identified DEGs was performed using enrichGO from clusterProfiler R package.103 Functional cat-

egories were selected using a hypergeometric test; categories with Benjamini-Hochberg corrected p < 0.05 were kept.

MacSpectrum (V1.0.1)47 a tool that uses macrophage differentiation (MDI) and polarization indexes (MPI) previously generated using

in vitro systems was utilized to further study activation gene signatures in microglia and MDM in all three areas. To functionally char-

acterize MDM and microglia, we used the following parameters: "pre-activation" or "M000 cells (AMDI <0, MPI <0), "M1-transitional"

(AMDI <0, MPI >0) or "M1-like" cells (AMDI >0, MPI >0), and "M2-like" cells (AMDI >0, MPI <0).

Spatial transcriptomics
Sections of formalin-fixed paraffin-embeded (FFPE) tissues of 4 GBM (GBM4, GBM7, GBM8, andGBM9, with T_Mass and T_SVZ for

each) were used per 10x Genomics Visium Spatial Gene Expression for FFPE – Tissue Preparation Guide (CG000408/Rev D) as fol-

lows: FFPE blocks were first faced and scored with a scalpel blade to isolate an area of tissue up to 63 6 mm, then chilled on an ice

block for 20min. Paraffin sections were cut at 5 mmusing a standardmicrotome, and floated on a 40�Cwaterbath, containing purified

water, to remove folds and wrinkles. Sections were carefully removed from the surface of the waterbath onto a Visium Spatial Gene

Expression Slide within the fiducial frames, starting with the top frame. The microtome was cleaned with xylene substitute, alcohol,

and RNAse Away, and a new bladewas obtained between each block. Once all frameswere filled, slides were placed in a slide rack in

an oven at 42�C for 3 h, then stored overnight at room temperature within a slide box containing a desiccant packet.

After overnight drying, slides were deparaffinized, stained with Hematoxylin and Eosin (H&E), and imaged per 10x Genomics Vis-

ium Spatial gene Expression for FFPE – Deparaffinization, H&E Staining, Imaging & Decrosslinking (CG000409/Rev C) as follows.

(i) for the slide deparaffinization, the following steps were taken: Xylene (3 changes, 5 min each), 100% ethanol (3 changes, 3 min

each), 95% ethanol (2 changes, 3 min each), 85% ethanol (3 min), 70% ethanol (3 min), Purified water (1 min);

(ii) for the Hematoxylin and Eosin staining the following steps were taken: Mayers Hematoxylin (Millipore Sigma MHS16) – 3 min,

Rinse in purified water (2 changes, 20 s and 10 s), Bluing Buffer (Fisher Scientific 6769001) – 1 min, Rinse in purified water (5

dips plus 20 s), Alcoholic Eosin (Millipore Sigma HT110116) – 1 min, Rinse in purified water (5 dips plus 20 s). Slides were then

coverslipped using 85%glycerol (Millipore Sigma 49781) and immediately imaged at 20X using the Leica Aperio AT2 slide digi-

tizing system. Coverslips were removed and slides were carefully rinsed in purified water and allowed to air dry. Decrosslinking

was performed with 0.1N HCl and TE Buffer (pH 9.0) to release RNA sequestered by formalin. Pairs of human transcriptome

probes (10x Genomics, PN-1000363) were hybridized to the RNA for 20 h, and libraries were prepared following the manufac-

turer’s instructions (CG000407 Rev D). Libraries were sequenced on a Singular Genomics G4 following PCR to add G4-spe-

cific adapters. The PCR used 2 ng of library, 0.3 mM of each primer, and NEBNext Ultra II Q5 Master Mix (New England

BioLabs, Cat. No. M0544) incubated at 98�C for 2 min followed by 7 cycles of 98�C for 20 s, 57�C for 30 s, and 72�C for 30

s, with a final extension at 72�C for 1 min. A similar protocol was used by 3D Genomics (https://3dgeno.com/) for the

HNS1 sample (one of the two N_SVZ samples included in this study).

10x Genomics Visium analysis
Spatial transcriptomic data from the 4 GBM (GBM4, GBM7, GBM8, and GBM9) and from HNS1 were processed from FASTQ files

and slides using 10x Genomics Space Ranger (v2.0.1). The GRCh38-2020-A reference transcriptome and the Human Transcriptome

v1 Probe Set were used for alignment. Spatial data was then processed and visualized using Squidpy (v1.3.1)104 for Python-based

analyses and Seurat (v4.9.9.9045)93 for R-based analyses. Downstream analysis was performed primarily in Python. Mitochondrial

genes were filtered out, and SCTransform (v2)96 was used to correct the raw counts using Analytic Pearson Residuals. Mitochondrial

genes were also filtered out prior to downstream analysis.

Definition of malignant spot
Spatial copy-number variation analysis was performed using the R packages SpatialInferCNV (v1.0.1)105 and InferCNV (v1.16.0)

(https://github.com/broadinstitute/inferCNV). For each spot in each dataset, the raw gene expression counts were compiled and an-

notated by sample and tumor status. The N_SVZ data were used as a reference. The following parameters were used to generate the

copy-number variation heatmaps: cutoff = 0.1, denoise = TRUE, HMM = FALSE.

10x Visium spot deconvolution
For cellular deconvolution, Cell2Location (v0.1.3)106 was used on all samples to determine the cell type abundances within each Vis-

ium spot. The number of cells within each spot was determined using Squidpy, and the average value was provided as a parameter to

Cell2Location in order to perform deconvolution. Cell2Location was used to filter genes using the filter_genes function with the

default parameters (cell_count_cutoff = 5, cell_percentage_cutoff = 0.03, nonz_mean_cutoff = 1.12), resulting in quantities between
22 Cell Reports 44, 115149, January 28, 2025

https://github.com/saeyslab/multinichenetr
https://3dgeno.com/
https://github.com/broadinstitute/inferCNV


Article
ll

OPEN ACCESS
11,017 and 13,220 genes per dataset. We used Cell2Location’s RegressionModel to help map a posterior distribution of the esti-

mated cell type abundance for each Cell Class in the single-cell data. This model was trained for 500 epochs. With the estimated

cell-type abundances, a full Cell2Location model was trained for 30,000 epochs on the spatial data to estimate the deconvolved

cell types in each Visium spot. For visualizations, Cell2Location’s plot_spatial function was used for each slide.

10x Genomics Visium sample clustering
Spatial data were clustered using Seurat (v4.9.9.9045)93 using the Leiden algorithm. Cluster markers were determined using a Wil-

coxon Rank-Sum Test via Seurat’s FindAllMarkers function.

10x Genomics Visium spot clustering and intracellular communication
The cell type proportion of each sample were computed using the cell type abundance figures from Cell2Location (v0.1.3).106 For

each sample, the cell type abundance per spot was averaged and normalized, giving an overall cell type proportion for the entire

sample. Non-negative matrix factorization was computed using Cell2Location to highlight cellular compartments. The run_coloca-

tion algorithm was run with default parameters, with the exception of n_fact, which was set to between 5 and 30 to explore a wide

range of factors. The output data was reassembled into new plots to remove factors with no data. Cell2Location was used to identify

cell-type specific expression of all genes in the datasets as a prerequisite for Node-Centric Expression Models. The Python library

NCEM (v0.1.5)65 was used to infer cell-cell interaction and produce visualizations. In the network plots, edges are only plotted be-

tween sender and receiver cell types that share more than 150 differentially expressed genes. Edge thicknesses are proportional

to the L1 norm of the vector of fold changes.

10x Visium microglia spatial correlation
The celltype abundance values for each spot calculated by Cell2Location were used for spatial correlation analysis between micro-

glia and other cell classes. This analysis was performed on the T_Mass and T_SVZ samples for each of the four patients with spatial

transcriptomic data. The Pearson’s correlation coefficients between each pair of samples were compared using an r test in the R

package psych (v2.4.6).116 A Fisher transformation was used on each correlation in order to compare them using a two-tailed t

test. Statistical significance was determined with p < 0.05.

CD11b enrichment
Starting frombriefly cultured cells obtained from the T_Mass and the T_SVZ of 4 patients (GBM4, 7, 17, and 23) included in this study,

immunomagnetic microbeads decorated with recombinantly engineered antibody fragments for CD11b (Miltenyi Biotec, Cat. No.

130-049-601) were usedwith theMiniMACSSeparation Unit (Miltenyi Biotec, Cat. No. 130-042-102), MACSMultiStand (Miltenyi Bio-

tec, Cat. No. 130-042-303) andMSColumns (Miltenyi Biotec, Cat. No. 130-042-201) to enrich for the CD11b+ cell fraction and estab-

lish TAMs. Specifically, cell numbers were counted and incubatedwith CD11bmicrobeads for 15min at 4�C. Following centrifugation

and resuspension, cells were run through the columns using the separation unit. Upon immunomagnetic separation, CD11b-en-

riched cells were plated at approximately 104cells/cm2 in M2-Macrophage Generation Medium XF (PromoCell, Cat. No. C-28056)

prepared and supplemented with cytokines and mix as per the manufacturer’s instructions.

IL-1b and Wnt-5a ELISA
Cell culture supernatants of 33 104 cd11b-enriched TAMs isolated from the T_Mass and the T_SVZ of the 4 patients (GBM4, 7, 17,

and 23) and propagated in vitro using theM2-MacrophageGenerationMediumXF (PromoCell, Cat. No. C-28056) were collected 48 h

after cell passaging or after 48 h from treatment start and stored at�80�Cuntil the assaywas performed. TheHuman IL-1 beta/IL-1F2

DuoSet ELISA 96-wells (R&D Systems, Cat. No. DY201-05) and theWnt-5a ELISA kit (Human): 96 wells (Aviva Systems Biology, Cat.

No. OKEH00723) were used as per the manufacturer’s recommendation. The experiments were performed in triplicates and

repeated three times. IL-1b and Wnt-5a ELISA were also performed on TAMs following treatment with Nidanilimab or Box5. Specif-

ically, TAMs isolated from 2 patients (GBM4, and 7 with the T_Mass and the T_SVZ for each) were treated with the IL-1RAcP fully

humanized monoclonal antibody Nidanilimab (Selleckchem, Cat. No. 300113) at 20 mg/mL or with the Wnt-5a antagonist Box5 (Sell-

eckchem, Cat. No. P1216) at 100 mM for 48 h. A total of 3 3 104 TAMs were plated in triplicate per treatment condition and were

treated for 48 h with Nidanilimab or Box5 starting the day after plating. Control wells for each condition (patient and area) were

also included in triplicate and the experiment was repeated three times. Cell culture supernatants were collected for ELISA.

IL-1RAcP and Frizzled-3 immunofluorescence
CSCs were plated onto glass coverslips coated with Matrigel (Fisher Scientific, Cat. No. CB-40234A) overnight. Cells were washed

and fixed in 4% Formaldehyde (Millipore Sigma, Cat. No. M2-01-04) for 10 min at room temperature following permeabilization with

0.02% Triton X-100 (Millipore Sigma, Cat. No. T8787). After 1 h of blocking with 5% goat serum (Millipore Sigma, Cat. No. G9023),

cells were processed for immunofluorescence using an IL-1RAcP monoclonal antibody (Abnova, Cat. No. H00003556-M03) and the

FZD3 polyclonal antibody (Millipore Sigma, Cat. No. SAB4503171) at the recommended dilution of 1:200 at 4�C overnight. The next

day, cells were washed with 1X phosphate buffer saline (PBS) (Millipore Sigma, Cat. No. P2272) and incubated for 1 h at room tem-

perature with Alexa Fluor488 (Thermo Fisher Scientific, Cat. No. A32731 and A32723) used at 1:500. Cells were then counterstained
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with DAPI (Thermo Fisher Scientific, Cat. No. 62248) used at 0.5 mg/mL for 10 min. After washing with PBS, coverslips were mounted

onto microscope slides in mounting media. Slides were imaged in a ZEISS LSM 900 Confocal Microscope. To ensure signal spec-

ificity, every experiment was performed with control stainings (secondary antibodies and DAPI counterstaining only). We used these

controls for our image settings. As additional control stainings, we included the GBM cell line T98G (ATCC, Cat. No. CRL-1690), and

two commercial cell lines, namely monocyte-derived macrophages (PromoCell, Cat No. C-12915) and microglia (Creative Bioarray,

Cat. No. CSC-C1527). The fluorescence intensity mean values were obtained using the draw spine contour tool in ZEN (blue edition).

Image exporting to TIFF files was obtained using ZEN (blue edition). The same steps were performed for the IL-1RAcP immunostain-

ing of TAMs.

In vitro treatment assay
To evaluate the efficacy of Nidanilimab, a IL-1RAcP fully humanized monoclonal antibody (Selleckchem, Cat. No. 300113), CSCs

isolated from 3 patients (T_Mass and T_SVZ for each) and propagated in serum-free conditions as described above were treated

with IL-1b and Nidanilimab. Briefly, IL-1b treatment was performed by adding the recombinant human IL-1b protein (R&D Systems,

Cat. No. 201-LB/CF) to growth factor-enriched, serum-free cell culturemedium at a final concentration of 100 ng/ml. Nidanilimabwas

used at 20 mg/mL. A total of 2.53 105 CSCwere plated in triplicate per treatment condition and were treated for 48 h with IL-1b alone

or with IL-1b and Nidanilimab starting the day after plating. The in vitro proliferative potential of CSCs was evaluated as previously

described.117 Non-linear regression analysis was performed to assess the proliferative potential.

To evaluate the efficacy of Box5, a Wnt-5a antagonist (Selleckchem, Cat. No. P1216), CSCs isolated from 3 patients (T_Mass and

T_SVZ for each) and propagated in serum-free conditions as described above were exposed to conditioned medium of matched

TAMs treated in vitro with Box5 for 48 h. Briefly, a total of 3 3 104 matched TAMs were plated in triplicate per treatment condition.

Control wells for each condition (patient and area) were also included in triplicate. One day after plating, cells were treated with Box5

at 100 mM for 48 h. 13 104 cells/cm2 CSCs plated in triplicates on transwell polycarbonate membranes with cell culture inserts (Milli-

pore Sigma, Cat. No. CLS3428) pre-coatedwithMatrigel (Corning, Cat. No. 356234) diluted 1:50 in cell culturemediumwere exposed

for 10-14 days to the conditioned medium of matched TAMs, treated and control. To quantify cell invasion, cells on the inside of the

transwell membranes were removed using cotton swabs, and those invading the lower surface of the membranes were stained with

0.25% crystal violet (Millipore Sigma, Cat. No. 61135) for 10 min. After washing and drying, membranes were removed from the in-

serts and imaged by microscopy. Crystal violet was then eluted from the membranes by adding 500 mL of 33% v/v acetic acid (Milli-

pore Sigma, Cat. No. AX0073-75) solution and shaking for 10min. The eluted crystal violet was then transferred to a 96-multiwell plate

(100 mL/well). Absorbance at 590 nm was measured using a plate reader. The experiment was repeated three times.

Survival analysis
The GlioVis data portal79 was used to access The Cancer Genome Atlas GBM,80 Murat’s,81 Lee’s,82 Rembrandt’s,78 Gravendeel’s,77

and Chinese Glioma Genome Atlas83 datasets. Kaplan Meier survival curves were obtained by plotting the high and low IL1RAP and

FZD3 expression levels and patient overall survival using themedian expression as a cut-off. Only primary IDHwt and/or non-GCIMP

GBM samples were used for this analysis. Log rank test was used to determine the association between IL1RAP and FZD3 expres-

sion levels with overall patient survival. Statistical analysis was performed using the GlioVis data portal.79

QUANTIFICATION AND STATISTICAL ANALYSIS

For single-nucleus RNA-seq analyses, median gene expression values were compared using theWilcoxon Rank-Sum Test using the

R package LIBRA (v1.0.0). Genes were defined as significantly differentially expressed (DEGs) at Benjamini–Hochberg correction

FDR<0.05 and abs (log2(Fold Change))>0.3.

For the expression comparison analysis of ZEB1 target genes, the AddModuleScore() function from Seurat R package was used to

find average expression levels on single-cell level for the SCENIC identified ZEB1 targets. Aggregate scores of T_SVZ and T_Mass

were plotted in boxplots. Statistical significance was determined by comparing the median expression values using a Wilcoxon

Rank-Sum test.

For pathway analyses, the functional annotation of the identified DEGswas performed using enrichGO from clusterProfiler R pack-

age.103 Functional categories were selected using a hypergeometric test; categories with Benjamini-Hochberg corrected p < 0.05

were kept.

For 10x Genomics Visium sample clustering, spatial data were clustered using Seurat (v4.9.9.9045)93 using the Leiden algorithm.

Cluster markers were determined using a Wilcoxon Rank-Sum Test via Seurat’s FindAllMarkers function.

For microglia spatial correlation, the celltype abundance values for each spot calculated by Cell2Location were used for spatial

correlation analysis between microglia and other cell classes. This analysis was performed on the T_Mass and T_SVZ samples

for each of the four patients with spatial transcriptomic data. The Pearson’s correlation coefficients between each pair of samples

were compared using an r test in the R package psych (v2.4.6). A Fisher transformation was used on each correlation in order to

compare them using a two-tailed t test. Statistical significance was determined with p < 0.05.

For ELISA, each treatment condition and control experiments were performed in triplicates and experiments were repeated three

times. Mean values for estimated IL-1b orWnt-5a secretion were plotted as bar graphs (Figure 5D) or truncated violin plots (Figure 6A
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left; Figure 6B left) along with standard error of the mean (s.e.m). Means were compared using unpaired t test for statistical signifi-

cance. p < 0.05, and p < 0.01 are indicated in the figures with the *, and ** symbols, respectively.

Growth curves were generated to evaluate the in vitro proliferative potential of CSCs by plotting the mean estimated total cell

number ±s.e.m on days 4, 8, and 12 or 5, 10, and 15 for each treatment. All experiments for controls and experimental groups

were performed in triplicates. Statistical significance was evaluated by non-linear regression analysis. p < 0.05, p < 0.001, and

p < 0.0001 are indicated in Figure 6A right with the *, ***, and **** symbols, respectively.

Cell migration was quantified by generating truncated violin plots using the mean absorbance values of crystal violet at 590 nm ±

s.e.m. All experiments were performed as triplicates. Meanswere compared using unpaired t test for statistical significance. p < 0.05,

p < 0.001, and p < 0.0001 are indicated in Figure 6B right with the *, ***, and **** symbols, respectively.

Fluorescence intensity mean values ±s.e.m were plotted for graphical representation of immunofluorescence results. Means were

compared using unpaired t test for statistical significance. p < 0.01, and p < 0.0001 are indicated in Figures 5E and 5F with the **, and

**** symbols, respectively.

Statistical analysis and graphical representation of results from in vitro treatments, ELISA experiments, immunofluorescence, and

quantification of cell migration were performed using GraphPad Prism (V. 10.3.1.509).

For survival analysis, log rank test was used to determine the association between IL1RAP and FZD3 expression levels with overall

patient survival (Figures 6C and 6D). Statistical analysis was performed using the GlioVis data portal.79 Significance was determined

with p < 0.05.
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