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Tumour surface regularity predicts survival
and benefit from gross total resection in
IDH-wildtype glioblastoma patients
Peng Lin1* , Jin-Shu Pang2, Ya-Dan Lin2, Qiong Qin2, Jia-Yi Lv2, Gui-Qian Zhou3, Tian-Ming Tan4,
Wei-Jia Mo4 and Gang Chen4*

Abstract

Objectives To evaluate the ability of sphericity in glioblastomas (GBMs) for predicting overall survival (OS) and the
survival benefit from gross tumour resection (GTR).

Methods Preoperative MRI scans were retrospectively analysed in IDH-wildtype GBM patients from two datasets. After
MRI preprocessing and tumour segmentation, tumour sphericity was calculated based on the tumour core region. The
prognostic value of tumour surface regularity was evaluated via Kaplan–Meier (K-M) plots, univariate and multivariate
Cox proportional hazards analyses. In different surface regularity subgroups, the OS benefit from GTR was evaluated via
K-M plots and the restricted mean survival time (RMST).

Results This study included 367 patients (median age, 62.0 years [IQR, 54.5–70.5 years]) in the discovery cohort and
475 patients (median age, 63.6 years [IQR, 56.2–71.3 years]) in the validation cohort. Sphericity was an independent
predictor of OS in the discovery (p= 0.022, hazard ratio (HR) = 1.45, 95% confidence interval (CI) 1.06–1.99) and
validation groups (p= 0.007, HR= 1.38, 95% CI: 1.09–1.74) according to multivariate analysis. Age, extent of resection,
and surface regularity composed a prognostic model that separated patients into subgroups with distinct prognoses.
Patients in the surface-irregular subgroup benefited from GTR, but patients in the surface-regular subgroup did not in
the discovery (p < 0.001 vs. p= 0.056) and validation datasets (p < 0.001 vs. p= 0.11).

Conclusions The high surface regularity of IDH-wildtype GBM is significantly correlated with better OS and does not
benefit substantially from GTR.

Critical relevance statement The proposed imaging marker has the potential to increase the survival prediction
efficacy for IDH-wildtype glioblastomas (GBMs), offering a valuable indicator for clinical decision-making.

Key Points
● Sphericity is an independent prognostic factor in IDH-wildtype glioblastomas (GBMs). High sphericity in IDH-wildtype
GBM is significantly correlated with better survival.

● GBM patients with low sphericity could receive survival benefits from gross tumour resection.
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Graphical Abstract

TTumour surface regularity predicts the survival and
benefit from gross total resection in IDH-wildtype
glioblastoma patients

Insights Imaging (2025) Lin P, Pang JS, Lin YD et al;
DOI: 10.1186/s13244-025-01900-2

The proposed imaging marker has
the potential to increase the
survival prediction efficacy for
IDH-wildtype GBM, offering a
valuable indicator to refine the
selection and planning of surgical
interventions.
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Introduction
Glioblastoma (GBM), the most common primary brain
tumour in adults, represents approximately 48% of all
brain tumours [1]. Despite some progress in the treatment
of GBM, the 5-year survival rates are still less than 10%
[2, 3]. Maximal and safe resection is the guiding principle
for GBM therapy [4, 5]. Recent studies have provided
evidence that maximising the extent of resection (EOR)
improves survival outcomes irrespective of the molecular
status [6, 7]. However, gross total resection (GTR) is not
always feasible, especially when dealing with tumours
located in functional regions [7, 8]. Therefore, the selec-
tion of precise and individualised treatment measures is
crucial for the prognosis and quality of life of patients.
Drexler R et al [9] reported that RTK I and RTK II GBM
patients could receive a survival benefit from GTR but not
from the MES subclass. Medical imaging indicators have
good clinical value owing to their noninvasive and
repeatable nature, but they have not yet been utilised
effectively.
Radiomics is a technique that extracts high-dimensional

features from medical images to enable quantitative ana-
lysis of tumour phenotypes [10, 11]. Radiomics technol-
ogy has been widely used in GBM patients. Radiomics

algorithms can assist in characterising core signalling
pathways and potentially provide guidance for targeted
therapy in IDH-wildtype GBM [12]. Radiomics is an
effective tool for the prognostic analysis of GBM, and
survival-related features are associated with various
molecular features of tumours, enhancing the interpret-
ability of the technology [13, 14]. However, radiomics
often requires deep learning or machine learning algo-
rithms to build models, which may have limitations in
terms of the interpretability of features and clinical
translation. Interpretable radiomic features need further
research to promote their clinical application. Some
morphological features play important roles in evaluating
tumour heterogeneity. A previous study reported that the
surface regularity parameter of GBM patients was an
indicator of survival and was helpful in predicting surgical
response [15].
Here, we aimed to explore the prognostic value of

sphericity in IDH-wildtype GBM patients. Patients can be
classified into different subgroups based on sphericity,
with significant survival differences. We show that
patients with surface irregularities receive significant
benefits from GTR, whereas patients with surface-regular
tumours do not.
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Materials and methods
Study samples
This study protocol involving the use of deidentified data
was approved by the Institutional Review Board of our
hospital. All patient-derived clinical, imaging, and geno-
mic data analysed in this study were publicly available and
previously deidentified in The Cancer Imaging Archive
(TCIA) database [16]: University of California San Fran-
cisco (UCSF) [17] and University of Pennsylvania (UPenn)
[18].
A total of 842 patients from the UCSF and UPenn

cohorts were included to explore the prognostic value and

GTR response prediction value of sphericity. Patients who
met the following criteria were included: (1) had IDH-
wildtype GBM, (2) had baseline MRI data available before
treatment, and (3) had available follow-up and EOR
information for OS. The exclusion criteria were as fol-
lows: (1) MRI examinations were performed during fol-
low-up, (2) patients whose IDH mutation and IDH
mutation information was not otherwise specified/not
otherwise classified (NOS/NEC), and (3) follow-up and/or
EOR information for OS was not available (Fig. 1A). The
criterion for GTR was the absence of any residual
enhancing tumour on these postoperative MRIs, which is

Fig. 1 Flowchart and examples of three-dimensional reconstruction and sphericity calculation results. A Flowchart showing the patient inclusion process
protocol for each cohort. The two datasets used are publicly available in The Cancer Imaging Archive database. B Sphericity measures the degree of
roundness of the tumour region in comparison to that of a sphere. The larger the sphericity measurement value is, the more regularity it represents. A
sphericity equal to 1 indicates a perfect sphere. 3D surface representation of the tumours of 3 patients with different sphericity scores: 0.5, 0.7, and 0.9
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a standard measure in neurosurgical oncology for asses-
sing the completeness of resection.

MRI acquisition parameters
MRI examination images and segmentation files are
available in the TCIA database. Preoperative multimodel
MRI scans include four MRI models: T1-weighted (T1),
postcontrast T1 (T1C), T2-weighted (T2), and T2 fluid
attenuated inversion recovery (T2-FLAIR). Gadolinium-
based contrast agents were used in contrast-enhanced
examinations. For the UCSF dataset, all MRI scans were
obtained via a 3.0-Tesla scanner (GE Healthcare, Wis-
consin, USA) and a dedicated 8-channel head coil. For the
UPENN dataset, all MRI scans were obtained via a 3.0-
Tesla scanner (Siemens, Erlangen, Germany) with a 12-
channel phased array coil.

Preprocessing and segmentation
All multimode MR images were reoriented to the left-
posterior-superior region and coregistered to the same T1
anatomic template. Then, they were resampled to a spatial
resolution of 1 × 1 × 1 mm3. The images were then skull-
stripped for tumoural subregion segmentation. Automatic
segmentation of three major tumoural subregions,
namely, the enhancing tumour (ET), necrotic tumour
core (NCR), and peritumoural oedema (ED) subregions,
was performed via machine learning-based brain tumour
segmentation. Compared with those of the T1 model, the
NCR and ET subregions can be distinguished on the basis
of areas that appear hyperintense and hypointense on T1-
Gd, respectively. Biologically, enhancement of a tumour
signifies the presence of areas where there is leakage of
contrast agent due to a disrupted blood‒brain barrier,
which is frequently observed in high-grade gliomas. The
ED subregion is a hyperintense area on T2-FLAIR images.
Briefly, the patients’ coregistered and skull-stripped

structural multimodel MR images underwent automated
segmentation. For the UCSF dataset, automated seg-
mentation via an ensemble model consisting of interna-
tional brain tumour segmentation (BraTS) is the best
segmentation algorithm. The segmentations were then
manually corrected by two expert reviewers [17]. For the
UPENN dataset, automated segmentation processes were
also performed on the basis of the BraTS challenge top-
ranked deep learning algorithms, and then the label fusion
technique was used to combine the results of the different
algorithms [18].

Sphericity calculation
Based on the tumour images and corresponding seg-
mentation files, radiomic features were extracted from
these datasets via PyRadiomics version 3.0.1 software [19].
Sphericity is one of the shape features that is calculated

from the three-dimensional ROI. The value of sphericity
ranges from 0 to 1, where a value of 1 indicates a perfect
sphere. Hence, sphericity is a measure of the roundness of
the shape of the tumour region relative to a sphere. The
sphericity was calculated via the following formula:

Sphericity ¼
ffiffiffiffiffiffiffiffiffiffi

36πV 23p
A , where V is the volume of the mesh in

mm3 and A is the surface area of the mesh in mm2. In
accordance with previous publications [15], the “tumour
core” (TC) region containing NCR and ET labels was used
for sphericity calculations and further analysis.

Statistical analysis
All the statistical analyses were performed with R software
(version 4.2.2). OS was the endpoint in this study. An OS
event was identified as death from any cause. Kaplan–Meier
(K-M) plots with log-rank tests were analysed to identify
survival differences. The “survminer” software was used to
identify the optimal cut-off point for separating patients into
separate groups with distinct prognoses. The optimal cut-off
for sphericity was determined by the lowest log-rank p-value,
and each group was required to have at least 25% of the total
sample size for grouping. Prognosis associated with sphericity
was quantified using hazard ratios (HRs) and 95% confidence
intervals (CIs). Multivariate Cox analyses were performed to
determine whether the sphericity-based survival subgroup
algorithm was an independent prognostic factor. In the enter
method, all variables are entered into the model simulta-
neously. The restricted mean survival time (RMST) model

Table 1 Patient characteristics

Characteristic UCSF-PDGM

(n= 367)

UPenn-GBM

(n= 475)

Age

Median (IQR) 62.0 (54.5–70.5) 63.6 (56.2–71.3)

Sex

Female 149 (40.6) 188 (39.6)

Male 218 (59.4) 287 (60.4)

MGMT

Unmethylated 145 (39.5) 141 (29.7)

Methylated 203 (55.3) 99 (20.8)

Indeterminate or N/A 19 (5.2) 235 (49.5)

KPS score

≤ 80 – 31 (6.5)

90–100 – 41 (8.6)

N/A 367 (100) 403 (84.8)

GTR

Yes 214 (58.3) 292 (61.5)

No 153 (41.7) 183 (38.5)

GTR gross total resection, IQR interquartile range, KPS Karnofsky Performance
Scale, MGMT O-6-methylguanine-DNA methyltransferase, N/A not applicable
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was used to analyse the survival benefit difference via the
“survRM2” package in R software. Statistical significance was
identified with p-values < 0.05 unless otherwise noted.

Results
Patient characteristics
The discovery cohort (UCSF cohort) included 367
patients (median age, 62.0 years [IQR, 54.5–70.5 years]).
The validation cohort (UPenn) included 475 patients
(median age, 63.6 years [IQR, 56.2–71.3 years]). The
baseline clinicopathological and molecular features of the
included patients are summarised in Table 1.

Prognostic value of sphericity
Sphericity was extracted from the TC mask labels for
analysis. Sphericity can be used to quantify the surface

regularity of tumours (Fig. 1B). Patients were divided into
different subgroups according to their sphericity score.
The thresholds that best divided the patients into sig-
nificant subgroups were determined.
In the discovery cohort (UCSF cohort), the optimal cut-

off of sphericity was determined to be 0.826. Based on the
median value (Fig. 2A) and optimal cut-off (Fig. 2B) of
sphericity, K‒M plots revealed that patients with high
sphericity were significantly associated with longer OS in
the discovery cohort. In the validation cohort, patients in
the surface regularity subgroup also had superior OS than
patients in the surface irregularity subgroup, whether
distinguished by the median value (Fig. 2C) or the optimal
value (Fig. 2D) determined in the discovery cohort.
Univariate Cox analysis revealed that sphericity

achieved statistically significant OS differences in the

Fig. 2 Kaplan‒Meier plots for the groups with different surface regularity. Tumours with regular surfaces were significantly correlated with improved OS
in the discovery cohort based on median value (A) and optimal cut-off value (0.826) (B). In the validation cohort, GBM patient data also revealed that a
regular surface was significantly correlated with improved OS on the basis of the median value (C) and optimal cut-off value (0.826) determined in the
discovery cohort (D)
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discovery cohort (HR= 1.73, 95% CI: 1.27–2.37,
p < 0.001) and the validation cohort (HR= 1.47, 95% CI:
1.17–1.86, p < 0.001). Multivariate Cox analysis further
confirmed that the sphericity-based survival subgroup was
an independent prognostic factor for OS in GBM patients
after adjusting for clinicopathological and molecular
parameters in both the discovery cohort (HR= 1.45, 95%
CI: 1.06–1.99, p= 0.022) and the validation cohort
(HR= 1.38, 95% CI: 1.09–1.74, p= 0.007) (Table 2).
In the discovery cohort, multivariate analysis suggested

that age, EOR and surface regularity were independent
prognostic factors, suggesting their complementary value.
To further improve the accuracy of prognosis prediction,
we combined age, the EOR, and the surface regularity
score to fit a Cox proportional hazards regression model
as follows: score = 0.036 * age + 0.385 * surface regularity
subgroup − 0.738 * EOR. Based on the median risk score
of the integrated risk model, patients in the high-risk
group had poorer OS than patients in the low-risk group
did (HR= 2.16, 95% CI: 1.63–2.85, p < 0.001, Fig. 3A) and
those in the validation cohort did (HR= 1.59, 95% CI:
1.32–1.92, p < 0.001, Fig. 3B). Time-dependent ROC
curves for the training (Fig. 3C) and validation (Fig. 3D)
cohorts revealed that this risk model was a moderate
algorithm for prognosis prediction.
For the discovery cohort, 53, 37, and 3 samples in the

high sphericity group were methylated, unannotated and
unavailable for MGMT, respectively (n= 93). In the low
sphericity group (n= 274), 150, 108 and 16 samples were
methylated, unmethylated and unavailable for MGMT,
respectively. No significant difference in the proportion of
methylated MGMT was observed between different
sphericity statuses (p > 0.05). For the validation cohort, 16,
29, and 50 samples in the high sphericity group were
methylated, unannotated and unavailable for MGMT,
respectively (n= 95). In the low sphericity group (n= 380),
83, 112, and 185 samples were methylated, unmethylated
and unavailable for MGMT, respectively. No significant
difference in the proportion of methylated MGMT was
observed between different sphericity statuses (p > 0.05).

Sphericity and GTR survival benefit
We investigated differences in OS benefit from GTR
between the surface regularity subgroups of patients. We
found that, in the discovery cohort, there was no sig-
nificant OS benefit in patients with surface-regular
tumours (high sphericity) (HR: 0.56, 95% CI: 0.27–1.15,
p= 0.056; Fig. 4A), whereas patients with irregular
tumours (low sphericity) received a substantial OS benefit
from GTR (HR: 0.55, 95% CI: 0.40–0.75, p < 0.001; Fig. 4B).
In the validation cohort, we also observed that patients with
surface-regular tumours did not receive an OS benefit from
GTR (HR: 0.66, 95% CI: 0.36–1.21, p= 0.112; Fig. 4C)

compared with patients with surface-irregular tumours
(HR= 0.69, 95% CI: 0.56–0.86, p < 0.001; Fig. 4D).
Our analysis revealed an increase in RMST for patients

who received GTR compared with those who received
non-GTR in the low sphericity subgroup over a follow-up

Table 2 Univariable and multivariable Cox analysis of
sphericity-based survival subgroups in discovery and validation
datasets

Parameters Univariable analysis Multivariable analysis

HR (95% CI) p-value HR (95% CI) p-value

Discovery cohort (UCSF cohort)

Age (continues) 1.03 (1.02–1.05) < 0.001 1.04 (1.03–1.05) < 0.001

Sex

Female

(n= 149)

1 (Reference) – 1 (Reference) –

Male (n= 218) 1.15 (0.88–1.50) 0.317 1.20 (0.91–1.58) 0.194

MGMT

Unmethylated

(n= 145)

1 (Reference) 0.043 1 (Reference) 0.164

Methylated

(n= 203)

0.73 (0.55–0.96) 0.025 0.77 (0.58–1.01) 0.062

N/A (n= 19) 1.15 (0.64–2.06) 0.647 0.95 (0.52–1.73) 0.867

EOR

No-GTR

(n= 153)

1 (Reference) < 0.001 1 (Reference) < 0.001

GTR (n= 214) 0.50 (0.38–0.65) < 0.001 0.49 (0.37–0.65) < 0.001

Sphericity subgroup

High (n= 93) 1 (Reference) – 1 (Reference) –

Low (n= 274) 1.73 (1.27–2.37) < 0.001 1.45 (1.06–1.99) 0.022

Validation cohort (UPENN cohort)

Age (continues) 1.02 (1.01–1.03) < 0.001 1.02 (1.01–1.03) < 0.001

Sex

Female

(n= 188)

1 (Reference) – 1 (Reference) –

Male (n= 287) 1.02 (0.84–1.23) 0.871 0.99 (0.82–1.19) 0.904

MGMT

Unmethylated

(n= 141)

1 (Reference) < 0.001 1 (Reference) < 0.001

Methylated

(n= 99)

0.51 (0.39–0.66) < 0.001 0.41 (0.31–0.54) < 0.001

N/A or

indeterminate

(n= 235)

0.72 (0.58–0.89) 0.003 0.70 (0.56–0.86) 0.001

GTR

No (n= 183) 1 (Reference) – 1 (Reference) –

Yes (n= 292) 0.65 (0.54–0.78) < 0.001 0.69 (0.56–0.84) < 0.001

Sphericity

High (n= 95) 1 (Reference) – 1 (Reference) –

Low (n= 380) 1.47 (1.17–1.86) < 0.001 1.38 (1.09–1.74) 0.007

GTR gross total resection, HR hazard ratio, MGMT O-6-methylguanine-DNA
methyltransferase, NA not applicable
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of 1 year, 3 years and truncation (Table 3). At the trun-
cation time point, for surface irregularity tumours, the
RMST ratio between the GTR and no-GTR groups was
1.64 (95% CI, 1.26–2.13; p < 0.001) in the discovery cohort
and 1.52 (95% CI, 1.17–1.97; p= 0.002) in the validation
cohort. For surface regularity tumours, the RMST ratio
between the GTR and no-GTR groups was 1.37 (95% CI,
0.95–1.98; p= 0.093) in the discovery dataset and 1.65
(95% CI, 0.99–2.74; p= 0.054) in the validation cohort.

Discussion
Radiomics can capture tumour heterogeneity based on
medical imaging phenotypes. However, numerous limitations

have been identified, leading to obstacles for its clinical
application. These limitations include a lack of generalisability
and challenges in identifying reliable and practical clinical
biomarkers [20, 21]. Currently, many machine learning or
deep learning algorithms are used for radiomics model
development. These algorithms require reproducibility of
classifier development methods and complex statistical vali-
dation and instead ignore the clinical value of the feature itself.
Here, we determined that the surface regularity parameter
sphericity of IDH-wildtype GBMpatients was an independent
indicator of OS. Furthermore, we found that subgroups
determined by sphericity could identify patients who may
receive an OS benefit from GTR.

Fig. 3 The prognostic value of the risk model. Kaplan–Meier (K-M) plots show that patients in the high-risk subgroup had shorter OS than patients in the
low-risk subgroup did based on the median value of the risk model in the discovery (A) and validation cohorts (B). The time-dependent receiver
operating characteristic (ROC) curves show that the survival risk model is effective for survival prediction in the discovery (C) and validation (D) cohorts
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Fig. 4 The prognostic value of gross tumour resection (GTR) varies among patients with different surface regularity features. The Kaplan–Meier (K-M)
plots show no significant improvement in OS in patients with surface-regular tumours treated with GTR (A), whereas GTR improved OS in those with
surface-irregular tumours (B) in the discovery cohort. The K-M plots show no significant improvement in OS in patients with surface-regular tumours
treated with GTR (C), whereas GTR improved OS in those with surface-irregular tumours (D) in the validation cohort

Table 3 RMST ratio between GTR and non-GTR groups in different sphericity subgroups

High sphericity Low sphericity

RMST ratio

(95% CI)

p-value RMST ratio

(95% CI)

p-value

Discovery cohort (UCSF cohort) 1-year 1.10 (0.95–1.27) 0.189 1.13 (1.03–1.25) 0.009

3-year 1.22 (0.91–1.65) 0.187 1.47 (1.23–1.76) < 0.001

Truncation 1.37 (0.95–1.98) 0.093 1.64 (1.26–2.13) < 0.001

Validation cohort (UPENN cohort) 1-year 1.12 (0.96–1.31) 0.142 1.23 (1.12–1.35) < 0.001

3-year 1.27 (0.94–1.71) 0.127 1.37 (1.17–1.60) < 0.001

Truncation 1.65 (0.99–2.74) 0.054 1.52 (1.17–1.97) 0.002

RMST restricted mean survival time, GTR gross total resection
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The first strength of our study is the simplicity of
sphericity, which can predict OS in IDH-wildtype GBM
patients via routine clinical scans without the need for
advanced neuroimaging data. The findings of previous
studies revealed several imaging phenotypes for OS pre-
diction in GBM patients. Some excellent studies have
provided artificial intelligence-based technology for survi-
val prediction in GBM patients [22, 23], which has shown
that quantitative medical images have the potential to
accurately evaluate tumour heterogeneity. Radiomics has
shown great promise in differentiating the clinical out-
comes of GBM patients [24, 25]. In our multivariate ana-
lysis, age, EOR and sphericity-based subgroups were found
to be independent factors for GBM patient OS. The non-
invasive prognostic model showed moderate prognosis
prediction performance. Without losing performance, our
model has the advantages of simplicity and interpretability.
Harsh tumour microenvironment conditions may cause
tumours to grow with morphological invasiveness [26].
These conditions mainly include hypoxia and a hetero-
geneous extracellular matrix, which is a key feature of the
infiltrative phenotypes of GBM [27, 28]. These theoriesmay
explain the prognostic value of sphericity.
Another result that should be noted is that patients with

low sphericity GBM are more likely to receive survival
benefit from GTR. Notably, a previous excellent study also
showed that the surface regularity of GBM is a survival
predictor [15]. They reported that tumours with regular
surfaces were closely correlated with longer OS than
tumours with irregular surfaces were. The multivariate
analysis revealed that age and surface regularity were
significant variables. These findings are consistent with
our findings. However, they reported that patients with
surface-regular tumours benefit substantially from GTR,
whereas patients with surface-irregular tumours do not.
This finding contradicts what we have observed pre-
viously, which could be due to different threshold selec-
tions or heterogeneity among different datasets. The 2021
WHO classification classified adult-type diffuse gliomas
into the following: (1) astrocytoma, IDH-mutant; (2) oli-
godendroglioma, IDH-mutant, and 1p/19q-codeleted; and
(3) glioblastoma, IDH-wildtype [29]. Therefore, our study
included only IDH-wildtype GBM for analysis. Therefore,
the cut-off for OS risk stratification may differ owing to
different molecular statuses, and further validation with
larger samples is needed to investigate the relationship
between sphericity and GTR in the future. A recent study
revealed that newly diagnosed and recurrent GBM
patients with DNA methylation subclasses RTK I and
RTK II would receive a survival benefit from the max-
imised extent of resection. However, patients with the
mesenchymal subtype do not benefit from this approach
[9]. With the increasing comprehension of GBM patients’

imaging and molecular characteristics, stratifying patients
based on their suitability for GTR, particularly in cases of
GBM involving functional areas or recurrent GBM, has
potential.
In our study, several limitations should be discussed.

First, this retrospective study included patients from dif-
ferent centres rather than from a prospective randomised
clinical trial, and the collected clinicopathological or
molecular parameters may have heterogeneity depending
on different standards. To validate the prognostic and
predictive value of sphericity, further prospective analyses
should be performed. Second, no data for adjuvant che-
motherapy or other treatments were available. The influ-
ence of different treatment approaches, such as adjuvant
therapy, should be validated in future studies. Third, future
studies should integrate multiomicsmolecular information,
which could provide a complete molecular landscape for
imaging phenotypes in IDH-wildtype GBM.
In conclusion, our study revealed that high sphericity in

IDH-wildtype GBM patients was associated with longer
OS. Compared with patients with high sphericity, patients
with low sphericity benefit from GTR in terms of OS.
These findings validate sphericity as a reliable outcome
and surgical response predictor that may be considered in
clinical practice. However, the optimal cut-off value for
sphericity should be further validated in the future.
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GTR Gross total resection
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TCIA The Cancer Imaging Archive
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