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Abstract
Purpose  The prognosis of diffuse gliomas previously classified as “lower-grade” is heterogeneous and complicates clinical 
decisions. We aimed to investigate the molecular profile of clinical outliers to gain insight into biological drivers of long 
and short-term survivors.
Methods  Here, patients aged ≥ 18 years and diagnosed with diffuse glioma, WHO grade II/2 or III/3 were included. Short-
term survivors (STS) were defined as overall survival (OS) < 1 years, and long-term survivors (LTS) as OS > 10 years. DNA 
methylation profiling was performed using the Illumina EPIC 850k platform.
Results  In total, 385 patients (294 LTS, 91 STS) were included. Median overall survival was 234 months (95%CI: 207–248) 
in LTS and 7.3 months (95%CI: 6.4–8.1) in STS. Compared to STS, LTS were younger, had higher Karnofsky Performance 
Status, more extensive resections, and lower symptomatic burden (p < 0.001, respectively). Molecular reclassification showed 
IDH-mutant gliomas in 240/246 (95.5%) LTS and 10/79 (12.7%) STS. Initial diagnosis (tumor type and/or grading) changed 
in 69/325 (21.2%) patients based on reclassification according to WHO 2016 and in 45/258 (17.4%) as per WHO 2021. DNA 
methylation analysis indicated two clusters, one with mainly STS (39/41, 95.1%) and heterogeneous IDH-wildtype tumors 
(cluster A) and one with mainly LTS (82/106, 77.4%) and IDH-mutant tumors (cluster B). Functional enrichment analysis 
of rare subtypes indicated altered Hippo/Notch and synaptic/neurotransmitter signaling pathway members.
Conclusion  LTS and STS show distinct clinical and molecular features, underscoring the importance of extended molecular 
workup for diagnosis. Further characterization of rare subtypes is needed to optimize treatment strategies and clinical trial 
planning.
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Introduction

Diffuse gliomas are a highly heterogeneous group of malig-
nant brain tumors. In line, survival ranges from a few weeks 
to over a decade, challenging the optimal sequencing of neu-
rotoxic therapies and the planning of inclusion criteria in 
clinical trials. Recently, molecular factors were included in 
the revised WHO Classifications of Central Nervous System 
Tumours in 2016 and 2021, moving from a histopathological 
classification towards an integrated framework considering 
both morphological appearance and molecular alterations [1, 

2]. In addition, whole-genome DNA methylation profiling 
is increasingly applied in brain tumor classification, as it 
allows for the definition of more homogenous tumor entities 
[3] and also led to the discovery of novel subgroups with 
distinct biological and clinical characteristics [4–6].

Thereby, molecular characterization including DNA 
methylation profiling also allowed for improved prognostic 
stratification [7–12]. However, the rapid evolution of tumor 
classification frameworks underscores the necessity of con-
tinuous validation of their clinical relevance and prognos-
tic impact in large real-life cohorts, guiding further devel-
opment of brain tumor classification criteria. Indeed, the 
increasing granularity of brain tumor classification comes 
with a scarcity of clinical annotation, which is a pivotal Extended author information available on the last page of the article
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basis for treatment decisions, clinical trial planning and 
the counseling of patients as well as their caregivers. For 
instance, previous studies establishing the treatment stand-
ards for glioblastoma (CNS WHO grade 4) as well as isoci-
trate dehydrogenase (IDH)-mutant glioma (astrocytoma and 
oligodendroglioma) did not address in full detail the now 
established insights on molecular markers in the diagnostic 
workup [13–16]. In consequence, the current treatment rec-
ommendations are based on heterogeneous trial cohorts, and 
several molecular markers were only analyzed in a post-hoc 
manner [17, 18].

To gather real-life insights on the clinical and molecular 
drivers of prognostic outliers, we analyzed clinical charac-
teristics, molecular reclassification trajectories and DNA 
methylation profiles in a large real-life cohort of long- (LTS) 
and short-term survivors (STS) of tumors previously classi-
fied as WHO grade II and III glioma who were managed at 
two academic neuro-oncology centers in Austria.

Materials and methods

Patient cohort

In this retrospective study, adult (≥ 18 years) patients diag-
nosed in clinical routine with a WHO grade II or III diffuse 
glioma between 2000 and 2019 and treated at the Medical 
University of Vienna (Vienna, Austria) or the Kepler Univer-
sity Hospital Linz/Neuromed Campus (Linz, Austria) have 
been included. Inclusion of patients with recurrent tumor 
but first histological diagnosis before 2000 was allowed. 
LTS and STS were defined as patients with an OS (from 
first radiological suspicion of intracranial tumor) of > 10 
or ≤ 1 year(s), respectively. As control group in DNA meth-
ylation analyses, also medium-term survivors (MTS) with 
an OS between 1 and 10 years were included. Histological 
tumor classification at diagnosis was performed by a board-
certified neuropathologist, and molecular reclassification 
was done based on the 2016/2021 WHO Classification of 
Tumours of the Central Nervous System and recommenda-
tions of the Consortium to Inform Molecular and Practical 
Approaches to CNS Tumor Taxonomy—Not Official WHO 
(cIMPACT-NOW). In specific, IDH mutations were deter-
mined using immunohistochemistry (IHC) for the canonical 
IDH1 R132H mutation (anti-IDH1 R132H antibody, clone 
H09, Dianova GmbH, Hamburg, Germany) or sequencing, 
which was obligatory in the absence of positive IDH1-
R132H IHC and a patient age below 55 years. Codeletions 
of chromosome arms 1p and 19q were determined using 
multiplex ligation-dependent probe amplification (MLPA), 
fluorescent/chromogenic in  situ hybridization (FISH/
CISH) or DNA methylation analysis (see below). In cases 
where the detection of 1p/19q codeletion was not feasible, 

the diagnosis of astrocytoma, IDH-mutant was attributed 
to tumors in the presence of (1) IDH mutations, (2) clear 
astrocytic histology and (3) loss of ATP-dependent helicase 
ATRX and/or strong nuclear positivity for p53 in accordance 
with cIMPACT-NOW update 2 [19].

Data were retrieved by review of electronic medi-
cal records, and extent of resection (gross-total resection 
[GTR] vs. subtotal resection [STR] vs. biopsy) was deter-
mined based on postoperative magnetic resonance imaging 
(where available) or surgical notes. All data were entered 
into a FileMaker-based database (FileMaker Pro Advanced/
Server 19, FileMaker Inc., Santa Clara, CA, USA), and all 
statistical analysis was performed in pseudonymized form. 
This study was approved by the Ethics Committees of the 
Medical University of Vienna (protocol no. 1166/2019, 
2290/2020) and the Kepler University Hospital Linz (pro-
tocol no. 1274/2019). The study was performed in compli-
ance with the Declaration of Helsinki and its amendments 
as well as according to institutional and national guidelines.

DNA methylation analysis

Whole-genome DNA methylation analysis was performed 
on formalin-fixed, paraffin-embedded tissue (preferably from 
first surgery) retrieved from the Neuro-Biobank of the Medi-
cal University of Vienna and the tissue archive of the Divi-
sion of Neuropathology at the Kepler University Hospital 
Linz. DNA retrieval, methylation profiling and bioinformatic 
analyses have been performed as described previously [20]. 
Heatmaps were created based on beta values representing the 
proportion of methylated DNA at a given CpG site relative 
to the total DNA (both methylated and unmethylated) at that 
location. DNA methylation-based reclassification was per-
formed using the Heidelberg Methylation Classifier (version 
12b6) [3]. Copy number variation (CNV) estimation based 
on EPIC methylation values were determined using the R 
package conumee. The output of these analyses (*.bins.
igv files) was used for CNV load calculation as described 
recently [21]. In silico functional enrichment analyses have 
been performed using the top 2000 differentially methylated 
CpG sites mapped to genes using the ShinyGO tool [22].

Statistical analysis

Statistical analysis was performed using R 4.2.1 (The R 
Foundation for Statistical Computing, Vienna, Austria) 
with the packages readr, survival, survminer, ggpubr, doBy, 
readxl, ggplot2, ggalluvial, and ggrepel as well as Graph-
Pad Prism 10 (GraphPad, La Jolla, CA, USA). Chi-square 
and Fisher’s exact test were used to assess independence of 
categorical variables. Mann–Whitney-U test was performed 
to compare distributions of numerical variables between 
groups. OS was defined as the time between first radiological 
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Fig. 1   CONSORT-like diagram showing patient disposition and numbers of reclassified tumors. Abbreviations: CDKN2A/B = cyclin-dependent 
kinase inhibitors 2A/B; IDH = isocitrate dehydrogenase; OS = Overall survival; WHO = World Health Organization
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suspicion of intracranial tumor and death or last-follow-up as 
appropriate. Statistical significance was defined as p ≤ 0.05. 
Due to the hypothesis-generating scope of the study, no cor-
rection for multiple testing was performed [23].

Results

Patient cohort

Overall, data of 966 patients diagnosed between 01/01/2000 
and 31/12/2019 with histological diagnosis of WHO grade 
II or III glioma were available, of whom 385 (39.9%) met 
the inclusion criteria (Fig. 1). In total, 294/966 (30.4%) 
were LTS and 91/966 (9.4%) were STS (Fig. 2a). Median 
survival in the LTS cohort was 234 months (95% confi-
dence interval [95%CI]: 207–248), and 7.3 months (95%CI 
6.4–8.1) in the STS cohort (Fig. 2b). The clinical charac-
teristics between the STS and LTS cohort differed as LTS 

were younger (median age: 37 years, range: 18–78) than 
STS (median age: 65 years, range: 18–81; p < 0.001) and 
had a higher performance status (median Karnofsky Per-
formance Status [KPS] in LTS: 90% [range: 70%−100%] 
vs. STS: 80% [range: 40%−100%]; p < 0.001, Mann–Whit-
ney-U). Most tumors in LTS affected the frontal (169/294, 
57.5%) and temporal lobes (73/294, 24.8%), whereas tumor 
sites were more diverse in STS (p < 0.001, Fisher’s exact 
test). Tumor resections were more extensive in LTS (GTR: 
116/298 [39.5%] vs. STR/biopsy: 169/294 [54.1%]) than 
in STS (GTR: 9/91 [9.9%] vs. STR/biopsy: 80/91 [87.9%]; 
p < 0.001). A watch-and-wait approach after surgery was fol-
lowed more frequently in LTS (177/294, 60.2%) than in STS 
(33/91, 36.3%; p < 0.001). Detailed baseline and treatment 
characteristics are given in Table 1.  

Data on symptoms were available in 292/294 (99.3%) 
LTS and 90/91 (98.9%) STS. Overall, symptomatic bur-
den was higher in STS (23/90 [25.6%] patients with > 2 
symptoms) compared to LTS (28/292 [9.6%]; p < 0.001, 

Fig. 2   Patient characteristics and symptomatic burden. a Frequency 
of long- and short-term survival in overall cohort; b overall survival 
in included patients (overlaid plot showing survival of short-term sur-
vivors within 12 months); c symptomatic burden (≤ 2 and > 2 symp-

toms at presentation), presence of d epileptic seizures, e motor defi-
cits and f aphasia in long- and short-term survivors at presentation. 
P-values as determined by log-rank, Chi-square or Fisher’s exact test 
as appropriate
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Table 1   Patient characteristics. 
P-values as determined by Chi-
square, Fisher's exact or Mann-
Whitney-U tests as appropriate

CCNU = lomustine; LTS = long-term survivors; PCV = procarbazine, CCNU, vincristine; RT = radiother-
apy; STS = short-term survivors; TMZ = temozolomide; WHO = World Health Organization

LTS (n = 294) STS (n = 91) p-value

Sex
 Female 140 (47.6%) 39 (42.9%) 0.499
 Male 154 (52.4%) 52 (57.1%)

Median age (years, range) at diagnosis 37 (18–78) 65 (18–81)  < 0.001
Median Karnofsky Performance Status (range) 90% (70%−100%) 80% (40%−100%)  < 0.001
Original histological diagnosis at first surgery 

(including pre-WHO 2016 diagnoses)
 Astrocytic 130 (44.2%) 73 (80.2%)  < 0.001
 Oligodendroglial 86 (29.3%) 8 (8.8%)
 Mixed 78 (26.5%) 8 (8.8%)
 Not otherwise specified (NOS) 0 (0.0%) 2 (2.2%)

Original WHO grade at first surgery
 WHO grade II 201 (68.4%) 22 (24.2%)  < 0.001
 WHO grade III 93 (31.6%) 69 (75.8%)

MGMT promoter methylation status n = 165 n = 59
 Methylated 139 (84.2%) 22 (37.3%)  < 0.001
 Unmethylated 26 (15.8%) 37 (62.7%)

Tumor site
 Frontal 169 (57.5%) 20 (22.0%)  < 0.001
 Temporal 73 (24.8%) 24 (26.4%)
 Parietal 16 (5.4%) 15 (16.5%)
 Occipital 9 (3.1%) 4 (4.4%)
 Insular 18 (6.1%) 3 (3.3%)
 Other (supratentorial) 8 (2.7%) 16 (17.6%)
 Other (infratentorial) 1 (0.3%) 9 (9.9%)

Extent of resection at first surgery
 Gross total resection (GTR) 116 (39.5%) 9 (9.9%)  < 0.001
 Subtotal resection (STR) 117 (39.8%) 25 (27.5%)
 Biopsy 52 (17.7%) 55 (60.4%)
 unknown 9 (3.1%) 2 (2.2%)

Postoperative treatment
 Radio-chemotherapy 59 (20.1%) 35 (38.5%)  < 0.001
 Radiotherapy only 45 (15.3%) 12 (13.2%)
 Chemotherapy only 11 (3.7%) 9 (9.9%)
 Watch-and-wait 177 (60.2%) 33 (36.3%)
 Unknown/lost to follow-up 2 (0.7%) 2 (2.2%)

Chemotherapy regimen n = 70 n = 44
 RT/TMZ + TMZ 38 (54.3%) 17 (38.6%) 0.030
 RT/TMZ 4 (5.7%) 12 (27.3%)
 Adjuvant TMZ (without radiotherapy) 9 (12.9%) 6 (13.6%)
 Dose-dense TMZ 6 (8.6%) 5 (11.4%)
 CCNU 6 (8.6%) 2 (4.5%)
 PCV 3 (4.3%) 0 (0.0%)
 Experimental 3 (4.3%) 1 (2.3%)
 RT/TMZ + TMZ (hypofractionated RT) 0 (0.0%) 1 (2.3%)
 Unknown 1 (1.4%) 0 (0.0%)
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Chi-square test, Fig.  2c). Epileptic seizures were more 
prevalent in LTS (209/292, 71.6%) compared to STS (35/90, 
38.9%; p < 0.001, Chi-square test; Fig. 2d). In contrast, STS 
more frequently experienced motor deficits (32/90 [35.6%] 
vs. 21/292 [7.2%], p < 0.001) and aphasia (25/90 [27.8%] vs. 
27/292 [9.2%], p < 0.001; Fig. 2e/f). Further data on symp-
toms at presentation are given in Supplementary Fig. 1.

Molecular reclassification according to WHO 2016 
and WHO 2021

Based on the availability of tumor tissue, molecular reclas-
sification according to WHO 2016 could be performed in 
325/385 (84.4%) cases. Of these, 246/325 (75.7%) were LTS 
and 79/325 (24.3%) STS (Fig. 1, Supplementary Fig. 2).

An overview on integrated diagnoses in LTS and STS 
according to different classification frameworks is given in 
Table 2. Among LTS, 240/246 (97.6%) had IDH-mutant 
tumors of whom molecular reclassification showed a change 
of tumor type (such as astrocytoma to oligodendroglioma 
or vice versa) in 21 (8.8%) patients, while there were no 

changes in tumor grading. Reclassification of 65 oligoas-
trocytomas resulted in 32 (49.2%) oligodendrogliomas and 
33 (50.8%) astrocytomas according to WHO 2016. Tumor 
type remained unchanged in 154/240 (64.2%) cases of 
IDH-mutant LTS. In addition, 6/246 (2.4%) LTS had IDH-
wildtype glial tumors.

In STS, 69/79 (87.3%) tumors were IDH-wildtype, 
including 65 (94.2%) astrocytomas, IDH-wildtype. Newly 
assigned tumor types according to reclassification were 
seen in 4 cases, including 2 (2.9%) diffuse midline gliomas, 
H3K27-mutant (with resulting change in grading to WHO 
grade IV) and 2 (2.9%) anaplastic astrocytomas with piloid 
features. Interestingly, 10/79 (12.7%) STS had IDH-mutant 
gliomas, of whom 6 were reclassified as astrocytoma, IDH-
mutant and 4 as oligodendroglioma, IDH-mutant, 1p/19q-
codeleted according to WHO 2016.

Further reclassification according to WHO 2021 was 
performed in 258 patients. In the remaining cases, informa-
tion on CDKN2A/B status was missing in 40 patients with 
IDH-mutant astrocytoma, and information on molecular fea-
tures of glioblastoma (TERT mutation, EGFR amplification, 

Table 2   Reclassification according to prognosis

CNS = Central Nervous System; IDH = isocitrate dehydrogenase; LTS = long-term survivors; NOS = not otherwise specified; STS = short-term 
survivors; WHO = World Health Organization

Histological diagnosis Total LTS STS

Original histological 
diagnosis (n = 385)

Astrocytic, WHO grade II 104 88 (84.6%) 16 (15.4%)
Astrocytic, WHO grade III 99 42 (42.4%) 57 (57.6%)
Mixed (oligoastrocytic), WHO grade II 64 61 (95.3%) 3 (4.7%)
Mixed (oligoastrocytic), WHO grade III 22 17 (77.3%) 5 (22.7%)
Oligodendroglioma, WHO grade II 60 58 (96.7%) 2 (3.3%)
Oligodendroglioma, WHO grade III 34 28 (82.4%) 6 (17.6%)
Glioma, NOS 2 – 2 (100.0%)

WHO 2016 (n = 325) Diffuse astrocytoma, IDH-mutant, WHO grade II 97 93 (95.9%) 4 (4.1%)
Anaplastic astrocytoma, IDH-mutant, WHO grade III 36 34 (94.4%) 2 (5.6%)
Oligodendroglioma, IDH-mutant, 1p/19q-codeleted, WHO grade II 80 79 (98.8%) 1 (1.3%)
Anaplastic oligodendroglioma, IDH-mutant, 1p/19q-codeleted, WHO grade III 37 34 (91.9%) 3 (8.1%)
Diffuse astrocytoma, IDH-wildtype, WHO grade II 18 4 (22.2%) 14 (77.8%)
Anaplastic astrocytoma, IDH-wildtype, WHO grade III 52 1 (1.9%) 51 (98.1%)
Diffuse midline glioma, H3K27-mutant, WHO grade IV 2 – 2 (100.0%)
Anaplastic pilocytic astrocytoma, WHO grade III 2 – 2 (100.0%)
Dysembryoplastic neuroepithelial tumor, WHO grade I 1 1 (100.0%) -

WHO 2021 (n = 258) Astrocytoma, IDH-mutant, CNS WHO grade 2 66 64 (97.0%) 2 (3.0%)
Astrocytoma, IDH-mutant, CNS WHO grade 3 24 24 (100.0%) –
Astrocytoma, IDH-mutant, CNS WHO grade 4 3 3 (100.0%) –
Oligodendroglioma, IDH-mutant, 1p/19q-codeleted, CNS WHO grade 2 80 79 (98.8%) 1 (1.2%)
Oligodendroglioma, IDH-mutant, 1p/19q-codeleted, CNS WHO grade 3 37 34 (91.9%) 3 (8.1%)
Glioblastoma, IDH-wildtype, CNS WHO grade 4 42 3 (7.1%) 39 (92.9%)
Diffuse midline glioma, H3K27-altered, CNS WHO grade 4 2 – 2 (100.0%)
High-grade astrocytoma with piloid features, CNS WHO grade 3 3 – 3 (100.0%)
Dysembryoplastic neuroepithelial tumor, CNS WHO grade 1 1 1 (100.0%) –
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7p + /10q-) was missing in 27 patients with IDH-wildtype 
glioma. Overall, there was a reclassified tumor type in 42 
samples (39 STS, 3 LTS), which were previously classi-
fied as astrocytoma, IDH-wildtype and fulfilled molecu-
lar criteria of glioblastoma. Consequently, assigned tumor 
grade increased to CNS WHO 4 in 10 samples previously 
graded as WHO grade II and 32 samples with WHO grade 

III. In addition, 3 samples with astrocytoma, IDH-mutant 
(WHO grade II: 1; WHO grade III: 2) were graded as CNS 
WHO grade 4 as they harbored homozygous deletions of 
CDKN2A/B (all LTS).

Of note, 2 patients with astrocytoma (CNS WHO grade 2) 
and 4 patients with oligodendroglioma (1 with CNS WHO 
grade 2; 3 with CNS WHO grade 3) were STS. In contrast, 

Oligodendroglioma, 
IDH−mt, 1p19q−codel

CNS WHO 2

Oligodendroglioma, 
IDH−mt, 1p19q−codel

CNS WHO 3

Astrocytoma, IDH−mt
CNS WHO 2

Astrocytoma, IDH−mt
CNS WHO 3

Astrocytoma, IDH−mt, CNS WHO 4

Glioblastoma, IDH−wt
CNS WHO 4

NOS

diffuse glioma, 
IDH−mutant and 1p19q co−deleted 

[oligodendroglial type]

diffuse glioma, 
IDH−mutant and 1p19q retained 

[astroglial type]

diffuse glioma, IDH−mutant and 1p19q retained 
[astroglial type], high grade

glioblastoma, IDH−wildtype, RTK2 type

glioblastoma, IDH−wildtype, RTK1 type

glioblastoma, IDH−wildtype, 
mesenchymal type

HGAP

low score

Medium-term
survivors

Short-term
survivors

DMG, H3 K27−altered

HGAP

DNET

Long-term
survivors

150

WHO 2021 Methylation Classifier v12b6 Group

100

50

0

Medulloblastoma, SHH-activated, subtype 2

Inflammatory microenvironment

High-grade diffuse glioma of the midline/posterior fossa, H3/IDH-wildtype

Diffuse high-grade neuroepithelial tumor [adult-type, non-defined type B]

Myxoid glioneuronal tumor, PDGFRA-mutant

Diffuse high-grade neuroepithelial tumor [adult-type, non-defined type D]

Diffuse pediatric-type high-grade glioma, H3/IDH-wildtype, subtype A&B

Fig. 3   Alluvial plot showing DNA methylation-based reclassifi-
cation in 147 long-, medium-, and short-term survivors. Legend 
below showing methylation classification of small subgroups (from 
top to bottom). Abbreviations: CNS = Central Nervous System; 
codel = codeleted; DMG = Diffuse midline glioma, H3K27-altered; 
DNET = dysembryoplastic neuroepithelial tumor; HGAP = high-

grade astrocytoma with piloid features; IDH = isocitrate dehydroge-
nase; mt = mutant; NOS = not otherwise specified; PDGFRA = plate-
let-derived growth factor receptor A; RTK1/2 = subclass receptor 
tyrosine kinase I/II; SHH = sonic hedgehog; WHO = World Health 
Organization; wt = wildtype
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3 patients with glioblastoma according to WHO 2021 were 
LTS.

Unsupervised clustering of DNA methylation 
profiles

To further investigate biological alterations in LTS and STS, 
especially considering clinical “outliers” with unexpected 
prognosis based on their integrated diagnosis, we performed 
DNA methylation analysis in 126/389 (32.4%) patients of 
the cohort (LTS: 83/126 [65.9%]; STS: 43/126 [34.1%]) and 
included further 21 medium-term survivors (MTS). Further 
baseline characteristics of this cohort are given in Supple-
mentary Table 1, and reclassification according to the Hei-
delberg Molecular Neuropathology Classifier (MC) version 
12b6 is shown in Fig. 3.

By unsupervised clustering (Fig. 4), two clusters were 
obvious, with cluster A consisting of predominantly STS 
(39/41. [95.1%]), and cluster B comprising mainly LTS 
(82/106, [77.4%]) and MTS (20/106 [18.9%]) as well as 
IDH-mutant tumors (100/106, [94.3%]).

Interestingly, one LTS and one MTS were found in clus-
ter A, and 4 STS were found in cluster B. The methylation 
profile of one LTS in the predominantly STS cluster A was 
compatible with myxoid glioneuronal tumour, PDGFRA-
mutant, while the classifier score of the MTS case in the 
predominantly STS cluster A was below the threshold (“low 
score”).

STS in the predominantly LTS cluster B comprised three 
cases with oligodendroglioma (CNS WHO grade 3), of 
whom one displayed a CNV profile suggesting complete 
loss of chromosome 9 (including the locus for CDKN2A/B), 
while another tumor harbored losses in chromosomes 14q, 
15q, and gain in 11q. The remaining STS case in the pre-
dominantly LTS cluster B was previously classified as astro-
cytoma (CNS WHO grade 2) as MLPA did not show 1p/19q 
codeletion as predicted by DNA methylation profiling.

According to classifier version 12b6, a different diag-
nosis compared the WHO 2021 framework was assigned 
in 9/147 (6.1%) cases, mainly in IDH-wildtype tumors 
showing diverse methylation classifier diagnoses. Clinical 

characteristics of patients according to these methylation 
classes are given in Supplementary Table 2.

A correlation between total CNV load and prognosis has 
been reported in astrocytoma previously [24]. However, in 
our cohort, no association between OS and total CNV load 
was observed (Supplementary Fig. 3).

Functional enrichment analyses of rare subtypes

To investigate which molecular pathways may be altered 
in rare, newly assigned DNA methylation-based diagno-
ses compared to WHO classifications, we compared their 
DNA methylation profiles with the largest subgroup in 
each cohort (IDH-mutant glioma in LTS, glioblastoma in 
STS).

In STS, these rare subtypes included high-grade diffuse 
glioma of the midline/posterior fossa: H3/IDH-wildtype; 
diffuse high-grade neuroepithelial tumor (adult-type, non-
defined types B and D); and diffuse pediatric-type high-
grade glioma, H3 wildtype and IDH-wildtype, subtype A&B 
(novel). Cluster analysis showed distinct methylation profiles 
compared to glioblastoma (Supplementary Fig. 4a-c). Path-
way enrichment analyses based on the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) showed several altered 
molecular pathways involving synaptic signaling as well as 
neurotransmitter and Hippo signaling pathways (Fig. 5a–c).

In LTS, myxoid glioneuronal tumor, PDGFRA-mutant 
was seen as re-assigned LTS entity which clustered in the 
predominantly STS cluster A. In line, clustering showed 
a distinct methylation profile from IDH-mutant glioma as 
comparison group for LTS (Supplementary Fig. 3d). Also 
here, functional enrichment analysis revealed Hippo signal-
ing among other altered molecular pathways (Fig. 5d).

Discussion

In the present analysis, we showed that the molecular land-
scape of LTS and STS of diffuse gliomas previously classi-
fied as WHO grade II and III varies greatly as reflected by 
integrated classification frameworks and DNA methylation 
profiling. While we could confirm that most LTS consisted 
of patients with IDH-mutant glioma and most STS had IDH-
wildtype gliomas and thereby validate the current classi-
fication framework, there were outliers with unexpected 
prognosis based on their molecular background and DNA 
methylation profiles.

Indeed, ~ 5% of patients with IDH-mutant tumors in our 
cohort had an unexpectedly short OS below 12 months. 
Furthermore, unsupervised clustering of DNA methylation 
profiles revealed STS within the cluster primarily consisting 
of IDH-mutant LTS. While some tumors showed copy num-
ber alterations including homozygous losses of CDKN2A/B, 

Fig. 4   Heatmap and unsupervised clustering analysis based on DNA 
methylation analysis including clinical factors. Heatmap based on 
beta values reflecting the proportion of methylated DNA at a given 
CpG site relative to the total DNA (both methylated and unmeth-
ylated) at that location. Abbreviations: CHT = chemotherapy; 
F = female; GTR = gross total resection; LTS (10-15y) = long term 
survivors with an overall survival of 10–15 years (deceased); LTS 
(10 + y) = long term survivors with an overall survival of 10–15 
years (censored); LTS (15 + y) = long term survivors with an over-
all survival of more than 15 years; M = male; NA = not available; 
R-CHT = radio-chemotherapy; RT = radiotherapy; STR = subtotal 
resection; STS = short term survivor; WHO = World Health Organi-
zation

◂
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further factors remain largely unknown. In addition to the 
adverse prognostic impact of homozygous deletions of 
CDKN2A/B in astrocytomas as acknowledged in the current 
WHO 2021 classification [2], also an association of hemizy-
gous deletions has been described recently [25]. Moreo-
ver, mismatch repair deficient IDH-mutant astrocytomas 
are characterized by worse outcomes [4], and CDKN2A/B 

deletions may occur together with other copy number altera-
tions in oligodendroglioma, defining the distinct subgroup of 
oligosarcomas linked to short survival [5]. Further research 
in clinical and molecular prognostic factors in IDH-mutant 
gliomas are of high interest given the approval of the IDH 
inhibitor vorasidenib, opening new therapeutic avenues to 

Fig. 5   Functional enrichment analysis in a high-grade diffuse glioma 
of the midline/posterior fossa; H3/IDH-wildtype, b diffuse high-grade 
neuroepithelial tumor (adult-type non-defined type B/D), c diffuse 
pediatric-type high-grade glioma, H3 wildtype and IDH wildtype 
subtype A & B (novel), and d myxoid glioneuronal tumor. Top 10 

enriched categories according to false discovery rate (FDR) compared 
to (a/b/c) glioblastoma (IDH-wildtype) as reference group for short-
term survivors and (d) IDH-mutant gliomas as reference group for 
long-term survivors
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postpone tumor recurrence and thereby adverse effects of 
immediate radiotherapy and/or chemotherapy [26].

Conversely, DNA methylation profiles revealed LTS and 
MTS within the cluster primarily consisting of STS. Given 
that the molecular drivers of divergent prognosis remain 
unclear in some “blackbox” cases, refined prognostic strati-
fication is urgently needed to provide a rational basis for the 
clinical decision between postoperative treatment modalities 
[20].

Considerable heterogeneity was observed among IDH-
wildtype tumors, of whom the majority consisted of STS and 
was reclassified as glioblastoma based on the presence of 
molecular markers such as gain of chromosome 7p and loss 
of 10q, amplification of epidermal growth factor receptor 
(EGFR) and/or TERT promoter mutations [2]. Indeed, sam-
pling error in biopsies and the pathological workup might 
lead to histological undergrading [27], and tumors harboring 
these molecular alterations were shown to exhibit signifi-
cantly worse survival than other tumors classified as low-
grade gliomas [8, 12, 28]. The cases in our cohort under-
score the limited prognosis of “molecular” glioblastoma, 
as none of the included tumors showed histological grade 
IV/4 criteria at original diagnosis. On the other hand, some 
retrospective studies suggest longer PFS and tendentially 
longer OS in molecular glioblastoma compared to tumors 
fulfilling histological criteria of glioblastoma as molecular 
alterations might precede histological signs of necrosis or 
microvascular proliferation [29, 30]. However, well-anno-
tated large-scale validation is needed to provide a rational 
basis for clinical trial design and clinical management in 
these tumors.

Beside glioblastomas, IDH-wildtype tumor entities in our 
cohort included glial and glioneuronal tumors with vastly 
differing biological behavior. Whereas some tumor types 
have been incorporated in the 2021 WHO classification, 
other methylation classes are provisional (such as high-
grade diffuse glioma of the midline/posterior fossa: H3/
IDH-wildtype; adult-type diffuse high grade neuroepithe-
lial tumor, IDH-wildtype, subtypes B/D) [2]. In these, clini-
cal annotation and molecular phenotyping is scarce, espe-
cially in pediatric-type tumors only rarely affecting adults 
although their occurrence in non-pediatric populations might 
be underestimated [31]. Besides, small case series of myx-
oid glioneuronal tumors showed occurrence at all ages and 
overall benign clinical courses, and PDGFRA mutation has 
been postulated as oncogenic driver [32–34]. The methyla-
tion class high-grade diffuse glioma of the midline/posterior 
fossa, H3/IDH-wildtype involves tumors classified as glio-
blastomas, but not occurring in the cerebral hemispheres 
and characterized by distinct methylation profiles, although 
the further molecular and clinical significance remains 
unclear [35]. Similarly, novel subtypes of adult-type diffuse 
high-grade gliomas have distinct characteristics and may be 

characterized by better prognosis compared to glioblastomas 
according to retrospective case series [36].

Functional enrichment analyses of novel subtypes 
revealed differentially methylated CpG sites of genes 
involved in Hippo and synaptic/neurotransmitter signaling 
pathways. Recently, enriched gene sets of Hippo signaling 
were also described in LTS of glioblastomas based on their 
DNA methylation profile [37], and expression of Hippo 
pathway members has been described to correlate with 
tumor grade in astrocytoma and invasiveness of glioblas-
toma [38, 39]. Moreover, it has been shown that glutamater-
gic signaling induces calcium currents eventually stimulat-
ing glioma growth in preclinical models, and inhibition of 
postsynaptic AMPA receptors by antiepileptic drugs such 
as perampanel might decrease tumor proliferation [40–43]. 
While our results support the hypothesis that these pathways 
may also be involved in rare CNS tumors, further investiga-
tion in vitro and in vivo is needed to validate these findings. 
Indeed, drug repurposing trials investigating the inhibition 
of glutamatergic signaling in glioblastoma are ongoing and 
will shed light on the actionability of “neuro-tumoral” syn-
apses as treatment targets [44, 45].

Certainly, our study has inherent limitations. The retro-
spective cohort of diffuse gliomas diagnosed in a period of 
20 years is associated with heterogeneous treatment patterns 
over time and between participating centers as well as miss-
ing clinical information. Moreover, the extent of resection 
has partly been retrieved from surgical reports in patients 
where postoperative imaging was not available, limiting 
the reliability of this information [46]. Due to limited docu-
mentation, all-cause death was used as survival endpoint, 
challenging the validity of cancer-associated mortality in 
our cohort. In addition, DNA methylation analyses and full 
molecular reclassification according to the WHO 2021 clas-
sification including CDKN2A/B status were only feasible in 
a subset of patients given the limited availability of FFPE 
tissue, and low cellularity in tumor samples with resulting 
low yields of tumor DNA may compromise the validity of 
methylation profiles.

Conclusions

Our study underscores the utility of refined CNS tumor clas-
sification frameworks and DNA methylation profiling as 
they result in clinically more homogenous tumor entities in 
a real-life setting. Further integration of novel, molecularly 
defined subgroups with clinical annotation and prognostic 
information is needed, ideally within prospective, multicen-
tric registries. Besides supporting clinical decision-making 
and counseling of patients, integrated information allows to 
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facilitate the development of novel treatment strategies and 
optimize clinical trial design in rare entities of CNS tumors.
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