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Abstract
Purpose  Machine Learning (ML) has become an essential tool for analyzing biomedical data, facilitating the prediction 
of treatment outcomes and patient survival. However, the effectiveness of ML models heavily relies on both the choice of 
algorithms and the quality of the input data. In this study, we aimed to develop a novel predictive model to estimate indi-
vidual survival for patients diagnosed with glioblastoma (GBM), focusing on key variables such as O6-Methylguanine-DNA 
Methyltransferase (MGMT) methylation status, age, and sex.
Methods  To identify the optimal approach, we utilized retrospective data from 218 patients treated at our brain tumor center. 
The performance of the ML models was evaluated within repeated tenfold regression. The pipeline comprised five regression 
estimators, including both linear and non-linear algorithms. Permutation feature importance highlighted the feature with the 
most significant impact on the model. Statistical significance was assessed using a permutation test procedure.
Results  The best machine learning algorithm achieved a mean absolute error (MAE) of 12.65 (SD = ± 2.18) and an explained 
variance (EV) of 7% (SD = ± 1.8%) with p < 0.001. Linear algorithms led to more accurate predictions than non-linear esti-
mators. Feature importance testing indicated that age and positive MGMT-methylation influenced the predictions the most.
Conclusion  In summary, here we provide a novel approach allowing to predict GBM patient’s survival in months solely 
based on key parameters such as age, sex and MGMT-methylation status and underscores MGMT-methylation status as key 
prognostic factor for GBM patients survival.
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Background

Glioblastoma multiforme (GBM) are the most common pri-
mary malignant brain tumors in adults [19, 35], occurring 
with an incidence of approximately 3 cases per 100,000 per-
sons [19, 20]. Despite maximal safe surgical resection, and 
postoperative concurrent radiochemotherapy, GBM patients 

show a poor prognosis with a two-year survival rate of 27% 
and 5-year survival rate of 5% [20].

In recent years, molecular diagnostics gained substantial 
clinical relevance serving as prognostic marker that influ-
ence therapeutic decision-making [1, 13, 18]. A critical 
genetic alteration with significant implications for thera-
peutic strategy is the methylation of the MGMT promo-
tor [15, 18]. The MGMT gene resides on chromosome 10 
(10q26) and encodes for a DNA-repair-enzyme O-6-meth-
ylguanine-DNA-methyltrasferase that removes alkyl groups 
from the O6 position of guanine, a site frequently targeted 
by alkylating agents like temozolomide [23, 41]. When 
the MGMT promotor is methylated, the expression of the 
MGMT enzyme is silenced, reducing the tumor’s ability to 
repair the DNA damage. Stupp et al. [32] and others [6, 
26, 35] demonstrate a positive correlation between silenced 
MGMT-promotor, progression-free survival (PFS) and 
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overall survival (OS) following treatment with the alkylat-
ing agent temozolomide. The Nordic Elderly trial [26] and 
the NOA 08 study [6], show a significantly longer survival 
in elderly patients (> 60y and > 65y) with TMZ alone and 
MGMT promoter methylation, compared with TMZ with 
unmethylated tumors. The EANO 2021 guidelines on diag-
nosing and treating diffuse gliomas in adults underline again 
the importance of methylation in guiding treatment decisions 
on chemotherapy with alkylating agents [11].

For this reason, further analysis on the impact of differ-
ent MGMT-methylation status is of interest. The clinical 
implications of inconsistently methylated MGMT promotors 
remain unclear between truly methylated and non-methyl-
ated tumors, which best fit the defined prognostic model. 
This condition applies to tumors where methylation peaks 
are detected in some but not all PCR replicates.

In recent years, machine learning gains significant promi-
nence in tumor research, including studies on GBM.

Machine learning allows for the prediction of individual 
outcomes, as opposed to values that would otherwise pertain 
to the mean or median of a population. When considering 
the use of machine learning as a prognostic tool for patient 
survival—especially based on clinical parameters like treat-
ment regimen, MGMT methylation status, and the inclu-
sion of patients with tumor progression or recurrences—the 
development and implementation of an effective machine 
learning model remains a significant challenge [33, 37]. 
Therefore, the aim of this study was to evaluate a new ML 
model that may allow more precise prediction of patient’s 
survival compared to classical univariate models [3]. With 
our study, we aim to develop a regression model capable of 
providing individualized prognostic predictions for patients 
with GBM. Unlike classification models that divide patients 
into subgroups, our approach seeks to predict individual sur-
vival in months. To ensure ease of use in clinical practice, 
we have included the most relevant clinical variables, with 
a particular focus on the influence of MGMT methylation. 
Specifically, we aim to evaluate how MGMT methylation, 
categorized as positive, intermediate, or negative, carries 
different prognostic weights.

Methods

Study population

We enrolled 253 adult patients in this study, consecutively 
operated between 2015 and 2018 in our institute with a 
diagnosis of glioblastoma multiforme. Clinical variables 
were age at baseline, sex (female (f)/male (m)), MGMT 
methylation (positive, intermediate), and type of therapy 
(STUPP-Protocol: combined overall 60 Gy radiotherapy 
and temozolomide 75 mg per square meter body surface for 

six weeks, followed by six cycles of temozolomide alone /
Definite Radiotherapy. We divided MGMT methylation into 
3 clinical variables depending on the intensity of methyla-
tion: methylation positive, intermediate methylation posi-
tive, and no methylation. For therapy, we used patients who 
underwent Stupp-Protocol and definite radiotherapy. We 
extrapolated this information from our electronic medical 
records and partially through phone interviews. With these 
variables, we aim to predict overall survival in months.

Inclusion criteria

To be enrolled in our data set, the patients must undergo a 
glioma operation in our neurosurgical department between 
2015 and 2018, with corresponding histological and molecu-
lar characterization, IDH-wildtype, including methylation 
status and a pathology diagnosis resulting in WHO 4 (2021, 
Classification). By secondary malignant neoplasm, we reg-
istered the time of malignization of the histological results. 
This resulted in 253 patients in total. We also included only 
those patients for whom we had complete information on 
all variables to avoid inaccuracies due to imputations. Our 
final number for our most extensive dataset resulted in 218 
patients.

Histopathological analysis

We mainly focused on the difference in the clinical progno-
sis of truly methylated, not methylated, and inconsistently 
methylated tumors. DNA was extracted from each histologi-
cal probe and analyzed in our institute using a MS-PCR to 
set the three groups. Duplicate bisulfite reactions were per-
formed for each DNA sample, followed by duplicate PCRs. 
After that, a capillary electrophoresis was performed, and 
the methylation picks were observed. According to the band 
concentration, our Institute of Pathology defined the meth-
ylation status based on the concentration of the methylation 
bands. A tumor with MS-band concentration < 0,1 ng/ μL 
was characterized as not methylated. A MS-band concentra-
tion > 0,5 ng/ μL was defined as methylated. A concentration 
between 0,1 and 0,5 ng/ μL was characteristic for an incon-
sistently methylated tumor.

Statistical analysis

Focusing on MGMT-methylation as the main factor for our 
research question, we conducted a univariate statistical anal-
ysis using an Analysis of Variance (ANOVA) model in IBM 
SPSS (Version 29.0.2). In this analysis, MGMT-methylation 
was treated as a three-factor model, and age and sex were 
included as covariates to predict overall survival. We con-
sidered p-values less than 0.05 to be statistically significant.
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Machine learning model

For our machine-learning analysis, we used the pro-
gramming language Python 3.8 on PHOTONAI [3, 40], 
a machine-learning platform for implementing and visual-
izing machine-learning models.

We implemented five different algorithms for pre-
diction; of which three were linear and two non-linear 
models: Linear Regression, linear Support Vector Regres-
sion (SVR), non-linear SVR, Random Forest, K-nearest 
Neighbours.

Linear Regression fits a line to data by minimizing 
squared errors to model the relationship between vari-
ables, while linear Support Vector Regression finds a 
line within a specified tolerance to maximize margins 
and effectively handles both linear and non-linear rela-
tionships. Random Forest Regression averages predic-
tions from multiple decision trees to capture complex 
relationships and is robust against overfitting, while the 
K-Nearest Neighbour (KNN) algorithm predicts target 
values based on the average or most frequent values of 
the nearest neighbors.

For Hyperparameter optimization we integrated a 
nested 10 by tenfold regression with 5 repeats to optimize 
hyperparameters of the models and estimate the out-of-
sample prediction performance. To evaluate the models, 
we used mean squared error (MSE), mean absolute error 
(MAE), explained variance (EV), Pearson correlation 
(PC), and R-squared (r2). We calculated the performance 
on a null information estimator as a reference model. This 
reference model predicts the mean survival rate of the 
individuals in the training set.

To determine the influence of MGMT-methylation, we 
added a feature importance analysis to identify the vari-
ables with the highest impact on the predictive model. 
Permutation feature importance measures the impact of 
each feature by evaluating the model's performance with 
shuffled values of that feature. The procedure involves 
randomly shuffling the values of one feature in the data-
set, making predictions with the modified dataset, and 
calculating the decrease in model performance (MAE). 
This decrease in performance indicates the importance 
score. To statistically evaluate if the machine learning 
model performs better than random chance, we conducted 
a permutation test. In a permutation test, we began by 
shuffling the target variable while keeping the features 
unchanged. We then evaluated the model's performance 
on this shuffled dataset and repeated the process mul-
tiple times to generate a distribution of performance 
metrics under the null hypothesis. Finally, we compared 
the model's performance on the original dataset to this 
distribution to determine if the observed performance is 
statistically significant.

Results

Study population

Retrospective data from 218 patients (123 male, 95 female) 
that underwent treatment at our brain tumor center were 
included. The patient’s age ranged between 25 and 84 years 
with a median of 64 years (± 11.6 SD). 95.4% of the patients 
were treated according to the Stupp protocol (citation) and 
4.6% received radiotherapy only. Overall survival of all 
patients ranged from 0–101 months with a median survival 
of 21 months (± 17.9 SD, Table 1).

Statistical analysis

We calculated an ANOVA model to investigate the asso-
ciation of MGMT-methylation and overall survival. We 
included age and sex as covariates in the ANOVA model. 
MGMT was significantly associated with overall survival 
(F(2,213) = 3.6, p = 0.029).

Machine learning analysis

Overall, Linear Regression turned out to be the best algo-
rithm for prediction, resulting in a near-linear predictive 
visualization (MAE = 12.65, MSE = 296.26, Table  2). 
Linear Regression also showed better results compared 

Table 1   Population overview

Overall, the median age distribution is 64 years, with men being more 
frequently affected, showing a majority of positive MGMT meth-
ylation, and predominantly undergoing therapeutic application of 
the STUPP protocol. The overall survival demonstrates a median of 
21 months

Variable Population (n = 218)

Age
Total 25 – 84 years
Median 64 years, ± 11.6 SD
Sex
Female 43.6% (N = 95)
Male 56.4% (N = 123)
Adjuvant Therapy
Stupp-Protocol 95.4% (N = 208)
Definite Radiotherapy 4.6% (N = 10)
MGMT-Methylation
Positive 42.7% (N = 93)
Intermediate 19.7% (N = 43)
Negative 37.6% (N = 82)
Overall Survival
Total 0 – 101 months
Median 21 months, ± 17.9 SD
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to Null Information Rate (MAE = 13.65, MSE = 323.39), 
indicating the predictive stability of our model and prove 
of concept. The visualization of the dataset highlighted 
the nearly linear prediction of our data. This further con-
firmed that a linear model achieved the best results, as the 
distribution of our data follows a linear pattern (Fig. 1).

In the permutation test, we proved a general stability of 
the model (Fig. 2) and thus showed the significance of the 
results (p < 0.001).

Finally, the non-linear models were identified as the least 
effective algorithms for this dataset: Random Forest Regres-
sor with MAE of 13.35, MSE of 327.45, EV of −0.14 and K 
Neighbour Regressor with MAE of 14.06, MSE of 352.88 
and EV of −0.14 (Table 2).

Feature importance showed that age had the great-
est influences on the prediction (importance (mean) 1.45 
SD ± 1.02, Fig. 3). Regarding MGMT methylation, positive 
MGMT methylation had the highest impact (importance 
(mean) = 0.29 SD ± 0.39), while no MGMT methylation 
had the least (Table 3). It also emphasized that intermediate 
MGMT-methylation (MGMT 2, Table 3) had little to no 
influence on the model (Importance mean = 0.14, Rank = 3).

The table shows an overview of the feature importance for 
the five features used. Age has the highest influence (impor-
tance (mean) = 1.45), followed by positive MGMT meth-
ylation (MGMT 1, importance (mean) = 0.29) and interme-
diate positive MGMT methylation (MGMT 2, importance 
(mean) = 0.14). Sex and no MGMT methylation (MGMT 3) 
shows the least influence.

Discussion

Machine learning offers promising avenues to assess biomed-
ical data related to patient’s disease course and survival. Our 
study demonstrates that an effective machine learning model 
can be constructed within a multivariate framework, even 
when limited to three clinical parameters. Importantly, our 
data confirm the influence of established parameters, such 
as the patient’s age at diagnosis and MGMT-methylation 

Table 2   Overview comparison of all algorithms

Results of all used algorithms (Linear Regression, Linear SVR, 
SVR, Random Forest Regressor, K Neighbour Regressor) differenti-
ated by the metrics MSE (Mean Squared Error), MAE (Mean Abso-
lute Error), EV (Explained Variance), PC (Pearson Correlation) and 
R2 (R-Squared). In addition to the algorithms, the Null Information 
Rate serves as a reference. Linear Regression is the best model on the 
pipeline with MAE of 12.65 and EV of 7%, compared to K Neigh-
bour Regressor (MAE = 14.06, EV = −14%), which showed worse 
results than the Null Information Rate (MAE = 13.65, EV = 0%). 
Overall, linear algorithms show better results compared to the non-
linear estimators: Linear Regression (MAE = 12.65), Linear SVR 
(MAE = 13.13), and SVR (MAE = 12.18), all showing better results 
than Null Information Rate

Algorithm Name MSE MAE EV PC R2

Null Information Rate 323.39 13.65 0.00 NA −0.065
Linear Regression 296.26 12.65 0.07 0.31 0.03
Linear SVR 364.96 13.13 0.01 0.11 −0.19
SVR 310.20 12.18 0.08 0.31 −0.01
Random Forest Regressor 327.45 13.35 −0.04 0.18 −0.10
K Neighbour Regressor 352.88 14.06 −0.14 0.15 −0.20

Fig. 1   Visualization of predic-
tions: X-axis shows the data of 
true overall survival in months, 
y-axis shows the predicted sur-
vival in months. The diagram 
shows overall a linear direction 
of all predictions. The 10 folds 
represent the dataset divided 
into 10 sets. Each point repre-
sents the color of the given fold
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status, on overall survival and prognosis. Despite utilizing 
a limited number of variables, our model outperformed the 
null hypothesis model. It provides a solid foundation for 

further research into small-scale machine learning models 
aimed at enhancing clinical applicability.

Previous studies predominantly focus on classification 
models based on MRI data [29] categorizing outcomes 
into short- and long-term survival [34, 46] or employing 
regression models without clinical features [12]. While 
these methods highlight group-level differences, they fail 
to provide individualized predictions. Our approach seeks 
to bridge this gap, although further refinement is needed to 
enhance accuracy and applicability.

In our study, the linear model outperformes the non-lin-
ear approach, likely due to the limited number of variables 

Fig. 2   Permutation testing: Repeat of 1000 iterations to validate the 
strength of our model. The left diagram shows the results of the met-
ric Explained Variance, the X-axis showing the true results of each 
metric, the Y-axis showing the number of repeats (frequency). The 
left diagram shows the results of the metric Mean Squared Error, 

the X-axis showing the true numbers of all results of this metric, the 
Y-axis showing the number of repeats. The red line on each diagram 
represents the test statistic of our original metrics, showing significant 
results through permutation testing

Fig. 3   Feature Importance: 
X-axis showing the variable 
importance of each variable, 
y-axis showing the different 
variables, best being age, fol-
lowed by positive MGMT-meth-
ylation (MGMT1), intermediate 
MGMT-methylation (MGMT2), 
sex and no MGMT-methylation 
(MGMT3)

Table 3   Feature importance

Metric Age Sex MGMT 1 MGMT 2 MGMT 3

Importance (mean) 1.45 0.08 0.29 0.14 −0.02
Importance (SD) 1.02 0.24 0.39 0.26 0.11
Importance (rank) 1 4 2 3 5



	 Acta Neurochirurgica          (2025) 167:52    52   Page 6 of 8

involved. This finding aligns with previous research show-
ing mixed results when comparing Cox regression with 
Random Forest and SVM [8, 36]. While some studies show 
Cox regression superior [36] others favor Random Forest 
[8]. Predictions for clinical outcomes, particularly usw med-
ical imaging [16, 43] and next-generation sequencing [44]. 
Currently, a model comparing Random Forest and linear 
statistics has been tested and concludes that Random Forest 
results in accurate predictions. However, the model used 
more parameters and a larger patient population [33].

Our results suggest that more complex models could 
offer greater accuracy, mainly when dealing with hetero-
geneous patient cohorts and diverse clinical parameters. 
In comparison, a model with standard statistical analysis 
[14] has been performed to estimate survival.

Developing robust machine learning models for clinical 
applications faces several challenges. The heterogeneity of 
patient cohorts and the rarity of certain diseases compli-
cate model development. Additionally, variability in how 
clinical parameters are evaluated across different clinics 
hampers comparability and external validation [27, 28]. 
While machine learning continues to gain traction, issues 
such as overfitting and the interpretation of model outputs 
remain significant concerns [39].

The next challenge is understanding the offered results of 
a machine learning model [17]. Other challenges that have 
affected us include the wide range of clinical parameters 
and the reduction and capture of the most essential param-
eters to be used in the model. Effective model development 
requires interdisciplinary collaboration from the data col-
lection phase to ensure the capture of relevant data points.

Future efforts should focus on prospective models 
developed through close collaboration among hospitals, 
pathology centers, and data scientists to ensure larger 
patient cohorts and improve model comparability [5].

Our model confirms the prognostic inf luence of 
MGMT-methylation status. However, it did not show a 
significant impact of the intermediate state of MGMT-
methylation regarding the prognostic value on overall sur-
vival. Through our analysis, we were able to confirm the 
impact of positive MGMT methylation on prognosis, as 
already demonstrated by previous studies. Similarly, we 
showed that the absence of MGMT methylation (negative 
MGMT methylation) has little impact on prognosis. The 
intermediate state of MGMT-methylation has emerged as 
a significant variable under the new WHO Classification 
of 2021 [7]. A few studies started looking deeper into the 
impact of intermediate state MGMT-methylation [4, 9, 
30]. One study framed the intermediate state to be a grey 
zone in which a prognostic value could be possible [4]. 
With this we could emphasize future studies should inves-
tigate the impact of this intermediate state on prognosis 
and therapeutic approaches.

Limitation

A notable limitation of our study is the retrospective nature 
of data collection, introducing potential biases. The sam-
ple size may also affect the generalizability of our findings. 
Furthermore, the contentious methods and cut-off values for 
determining MGMT status present challenges [11]. Never-
theless, it remains discussed which analytic method should 
be used as standard. Furthermore, quite apart from the used 
technique, it seems to prevail a relatively high discordance 
in the MGMT results in central or local tests (about 39% 
[21]). Various studies and meta-analyses also found that the 
IHC method is not in close concordance with MSP-PCR 
analysis [2], nor with Pyrosequences [22]. Moreover, dis-
cussion continues regarding the cut-off value for defining 
whether an MGMT-Promoter is methylated or not [10, 10, 
42]. Due to the poorly comparable values of MGMT meth-
ylation, we decided against testing our analysis externally 
using a dataset from another clinic. Our evaluation specifi-
cally focused on intermediate MGMT methylation. Since 
this does not have a defined value in molecular diagnostics, 
it would represent a different variable from the one we are 
using. Therefore, conducting an external validation would 
not be effective for ensuring data comparability.

Overfitting remains a concern, particularly in high-grade 
gliomas and heterogeneous patient populations. Further vali-
dation in additional prospective cohorts is needed to confirm 
our model’s robustness and clinical utility.

Conclusion

Our study outlines challenges and limitations that affect the 
development of predictive models and indicates the potential 
of predictive models utilizing linear machine learning tech-
niques to estimate overall survival in glioblastoma patients, 
based on a small set of key variables such as the MGMT 
methylation status. We could confirm the impact of posi-
tive MGMT-methylation on the prognosis of GBM patient, 
whereas the intermediate state MGMT methylation showed 
little influence on our model.
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OS: Overall survival; r2: R-squared; SD: Standard Deviation
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