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A B S T R A C T

Early prediction of recurrence in high-grade glioma (HGG) is critical due to its aggressive nature and poor 
prognosis. Distinguishing true recurrence from treatment-related changes, such as radionecrosis, is a major 
diagnostic challenge. Machine learning (ML) offers a novel approach, leveraging advanced algorithms to analyze 
complex imaging data with high precision. A comprehensive search of PubMed, Embase, Scopus, Web of Science, 
and Google Scholar identified eligible studies. The sensitivity, specificity, accuracy, precision, F1 score, and the 
(area under the curve) AUC items were extracted from the included studies. After screening 1077 records, seven 
studies met the eligibility criteria for the systematic review, of which five were included in the meta-analysis. ML 
algorithm, particularly Support Vector Machines (SVM), demonstrated promising performance. A meta-analysis 
of five studies revealed a pooled sensitivity of 0.95 (95% CI: 0.84–0.99) and specificity of 0.80 (95% CI: 
0.69–0.88). Additionally, the positive diagnostic likelihood ratio (DLR) was 4.75 (95% CI: 2.91–7.76), the 
negative DLR was 0.06 (95% CI: 0.02–0.21), and the diagnostic odds ratio was 80.97 (95% CI: 17.5–374.61). The 
diagnostic score was calculated as 4.39 (95% CI: 2.86–5.93), and the AUC was 0.86 (95% CI: 0.83–0.89). 
Subgroup analyses showed SVM-based models with higher sensitivity (0.98 vs. 0.87) and specificity (0.82 vs. 
0.77) than non-SVM (p = 0.13). Comparing glioblastoma and Grade 3 tumors, sensitivities were 94 % vs. 97 %, 
and specificities were 79 % vs. 83 %, with no significant heterogeneity. These findings suggest that ML models, 
particularly SVM, offer promising diagnostic performance in distinguishing true tumor recurrence from 
treatment-related changes.
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1. Introduction

Glioma, the most common type of brain and spinal cord neoplasm, is 
the name for all tumors that originate from glial cells [1]. Intracranial 
gliomas are classified based on histological features, such as astrocytic 
or oligodendrocytic origin, and according to the World Health Organi
zation (WHO) grading system (grades 1–4). Of these, grades 3 and 4 are 
designated as high-grade gliomas (HGGs) [2]. These subtypes differ 
significantly in histology, cytological characteristics, and genetic pro
files. For instance, glioblastoma (GBM) is highly aggressive and classi
fied as IDH-wildtype, while astrocytomas are IDH-mutant [2]. About 
57 % of all gliomas are GBM [1], the grade IV glioma, which is char
acterized by its rapid growth, with an average survival time of 
12–15 months [3,4]. The poor prognosis of HGGs is due to high recur
rence rate, tumors’ biological complexity and therapeutic evasion which 
emphasizes the critical need for innovative and more effective treatment 
strategies to address the devastating impact of HGG [4]. The treatment 
for HGG may cause treatment-related changes (e.g., radionecrosis, 
pseudoprogression) on standard MRI sequences, which harden the 
identification of tumor progression [5].

Artificial intelligence (AI) has emerged as a transformative tool in 
medical diagnostics, offering significant advancements in the detection 
and management of complex and critical conditions [6,7]. In the context 
of HGGs, AI plays a vital role in addressing diagnostic challenges, 
particularly in distinguishing tumor progression from treatment-related 
changes and detecting recurrence [8,9]. AI algorithms with the use of 
machine learning (ML) and deep learning (DL) models have demon
strated remarkable accuracy in analyzing medical imaging data, such as 
MRI and CT scans, facilitating early and precise diagnosis [10]. This is 
especially critical in the management of recurrent HGGs, where tradi
tional diagnostic methods often struggle to differentiate between true 
tumor regrowth and post-treatment effects. Moreover, AI models can 
predict recurrence risk by integrating imaging landmarks, biomarkers, 
genomic profiles, and clinical data, enabling timely and personalized 
interventions [8,9,11].

In this study, our main goal was to demonstrate whether AI can be 
reliably used as a tool to predict the recurrence of HGG. In this regard, 
we conducted a systematic review and meta-analysis to assess the 
effectiveness and accuracy of AI algorithms in predicting the likelihood 
of recurrence in patients with HGG. The primary goal was to highlight 
how AI-based models can assist in clinical decision-making by providing 
more reliable, efficient, and accurate predictions of recurrence out
comes. Additionally, this study provides valuable insights for neuro
surgeons and radiologists by helping distinguish true tumor recurrence 
from treatment-related changes. It can guide surgical planning, enhance 
imaging interpretation, and improve overall patient management.

2. Methods

This systematic review and meta-analysis focused on assessing the 
diagnostic accuracy of ML algorithms in predicting the recurrence of 
HGG It has been internationally registered with PROSPERO Code 
CRD42024618667 and follows the Preferred Reporting Items for Sys
tematic Reviews and Meta-Analyses (PRISMA) guidelines to ensure a 
standardized and transparent methodology [12].

2.1. Search strategy

Four main databases of medical literature, including PubMed, Web 
of Science, Scopus, and Embase, were systematically searched from their 
inception until December 2, 2024. The main keywords of this study were 
"High-grade glioma", "glioblastoma", "recurrent", "Artificial intelli
gence", "Machine learning", and "Deep learning". The Medical Subject 
Headings (MeSH) in PubMed and Emtree terms in Embase were utilized, 
along with other keywords, to tailor unique search strategies for each 
database. No restrictions were applied regarding publication date, 

language, or publication type. Additionally, the first 100 results from 
Google Scholar were reviewed as part of a supplementary search. The 
complete search strategy syntax is provided in Supplementary Table S1.

3. Inclusion criteria

Studies were considered for inclusion in this systematic review and 
meta-analysis if they fulfill the following criteria: 1) Original articles 
such as cohort studies, randomized clinical trials and case-series 2) 
Conducted on patients diagnosed with HGG, 4) Reporting all type of ML 
algorithms; i.e., Random Forest (RF), convolutional Neural Network 
(DNN), Decision Tree (DT), K-nearest neighbors (KNN), Support Vector 
Machine (SVM) in predicting recurrent HGG.

3.1. Exclusion criteria

Studies were excluded if they had the following criteria for exit: 1) 
non-original articles, such as reviews, editorials, or case reports; 2) 
Involving cases of glioma classified as low-grade (Grade I, II); 3) The 
exact grade of the glioma is not specified; 4) Lacking sufficient data or 
outcomes related for prediction of recurrence; and 5) Research not using 
ML algorithms for prediction of recurrence.

3.2. Study selection

All database records were imported into EndNote 21 software. Two 
reviewers (BN and BH), according to the eligibility criteria, indepen
dently screened the articles. First, Duplicate records were removed, and 
then a screening process was conducted using titles, abstracts and the 
full text of the selected articles. Studies that met the eligibility criteria 
were delivered to the data extraction. Any disagreements between the 
two reviewers were resolved by involving a third reviewer (IM).

3.3. Data extraction

The data extracted from eligible articles included the first author’s 
name, publication year, country, number of patients, mean age, gender 
composition, study design, and reference imaging modality (e.g., 
computed tomography (CT) or magnetic resonance imaging (MRI)). The 
data also included performance metrics such as sensitivity, specificity, 
accuracy, precision, F1 score, and AUC. The items were registered into a 
predesigned Excel sheet. Two authors (BN and IM) separately reviewed 
and extracted the data of each article.

3.4. Quality assessment

The risk of bias (ROB) for this study was assessed through the 
PROBAST tool, which evaluates articles on four aspects, including par
ticipants, predictors, results, and analysis [13]. Each domain was 
assessed for ROB, categorizing articles as low, high, or unclear ROB 
while also evaluating the alignment of prediction models with the 
research question.

3.5. Statistical analysis

The meta-analysis was performed for the best-performing prognostic 
model from each study. The true-and-false positive true-and-false 
negative values that were calculated from sensitivity and specificity 
were pooled in the analysis. All statistical analyses were conducted using 
the MIDAS package in STATA version 17.

4. Result

4.1. Study characteristics

The systematic search yielded 1077 records, of which 28 articles 
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have been evaluated by their full text for eligibility. Seven articles met 
the criteria for inclusion in the systematic review, and five were included 
in the meta-analysis. The PRISMA flow diagram is presented in Fig. 1. All 
included studies were retrospective cohorts. The sample sizes of the 
included literature ranged from 29 to 134 participants, compromising a 
total of 533 patients, with females comprising 39.8 % of the population 
(female-to-male ratio: 0.66). The mean age of the participants was 54.3 
years. Three studies were from the United States, two from China, and 
one each from Australia and India. Out of the eight identified algo
rithms, only five were included in the meta-analysis, as the highest- 
performing algorithm from each study was selected for inclusion.

Out of the eight algorithms, six algorithms were machine learning 
(RF, SVM, DT, RBF and KNN) and two of them were deep learning (CNN 

and MFFE U-Net). The SVM was the most frequently used algorithm, 
featured in three studies (Fig. 2) (Tables 1 and 2).

SVM emerged as the best-performing algorithm among the included 
studies, achieving the highest average values for accuracy (0.9), sensi
tivity (1.0), specificity (0.933), and AUC (0.965). It was followed by 
CNN, which demonstrated an accuracy of 0.82, sensitivity of 1.0, spec
ificity of 0.6, and AUC of 0.8 (Fig. 3).

MRI, as the basis of the diagnostic modalities, was the imaging 
reference in 100 % of studies. Among the validation methods, three-fold 
cross-validation was the most frequent approach for performance eval
uation in the presented encoders (three out of the seven studies). 
Additionally, 5- and 10-fold cross-validation were also employed in 
other studies. Radiomics-based features were the most common input 

Fig. 1. PRISMA flowchart of the study selection process.
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characteristics employed in 5 out of the 7 studies, highlighting their key 
role in predictive modeling and analysis.

4.2. Sensitivity and specificity

The result of the meta-analysis demonstrated a pooled sensitivity of 
0.95 [95 % CI: 0.84–0.99], with considerable heterogeneity noted with 
an I2 of 59.06 [95 % CI: 18.68–99.44]. The χ2 test of heterogeneity had a 
Q and degrees of freedom (df) of 9.77 and 4, respectively (p-value 
<0.001). The pooled specificity was 0.8 [95 % CI 0.69–0.88], with very 
low heterogeneity observed between the studies, with an I2 value of 
0 [95 % CI: 0–100]. The χ2 test of heterogeneity had a Q and degrees of 
freedom (df) of 3.55 and 4, respectively (p value <0.001) (Fig. 4).

4.3. Positive and negative diagnostic likelihood ratio (DLR)

The positive likelihood ratio of the ML models was 4.75 [95 % CI: 
2.91–7.76], with very low heterogeneity (I2= 0, 95 % CI: 0– 100). The χ2 

test of heterogeneity had a Q and df of 4.49 and 4, respectively (p value 
<0.001). On the other hand, the pooled negative likelihood ratio was 
0.06 [95 % CI: 0.02–0.21], with moderate heterogeneity (I2= 54.84, 
95 % CI: 9.83–99.85). The χ2 test of heterogeneity had a Q and df of 8.86 
and 4, respectively (p value <0.001) (Fig. 5).

4.4. Diagnostic score and diagnostic odds ratio (DOR)

The diagnostic score obtained from the pooled data was 4.39 [95 % 
CI: 2.86–5.93], with significant heterogeneity (I2= 95.21 %, 95 % 
CI:92.44–97.99). The χ2 test of heterogeneity had a Q and df of 83.56 
and 4, respectively (p value <0.001). The DOR of the was 80.97 [95 % 
CI: 17.5–374.61], with severe heterogeneity (I2= 100 %, 95 % 
CI:100–100). The χ2 test of heterogeneity had a Q and df of 3.5e + 14 
and 4, respectively (p value <0.001) (Fig. 6).

4.5. Area under curve

The pooled area under the SROC curve, which reflects combined 
sensitivity and specificity, yielded an AUC of 0.86 (95 % CI: 0.83–0.89) 
(Fig. 7).

4.6. Subgroup analysis between studies utilizing SVM and Non-SVM 
algorithms

A subgroup analysis was performed to evaluate the sensitivity and 
specificity of machine learning models based on the presence or absence 
of SVM algorithms. Studies utilizing SVM (n = 2) demonstrated a pooled 
sensitivity of 0.98 (95 % CI: 0.95–1.00) and a specificity of 0.82 (95 % 
CI: 0.71–0.94). In contrast, studies without SVM (n = 3) showed a 
pooled sensitivity of 0.87 (95 % CI: 0.73–1.00) and a specificity of 0.77 
(95 % CI: 0.62–0.92). The joint model revealed a likelihood ratio test 
(LRT Chi-squared) value of 4.11 (p value= 0.13), suggesting no statis
tically significant difference between the two groups. However, the 
heterogeneity (I²) among studies utilizing SVM was 51 %, indicating 
moderate variability in the included studies.

4.7. Subgroup analysis: GBM vs. Grade 3 tumors

The subgroup analysis comparing GBM and Grade 3 tumors included 
two and three studies, respectively. The sensitivity for detecting GBM 
was 94 % (95 % CI: 86 %–100 %), with a specificity of 79 % (95 % CI: 
67 %–90 %). In contrast, the sensitivity for Grade 3 tumors was 97 % 
(95 % CI: 91 %–100 %), and the specificity was 83 % (95 % CI: 67 %– 
98 %). The p-value for sensitivity in the GBM group was 0.98, indicating 
no significant heterogeneity, while the p-value for specificity was 0.29. 
The joint model analysis showed no substantial heterogeneity across the 
studies (I² = 0 %), highlighting consistency in the findings. These results 
suggest comparable diagnostic performance across the two subgroups, 
with high sensitivity and moderate specificity.

Fig. 2. Frequency of algorithms used in the analyzed studies.
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4.8. Publication bias assessment

Deeks’ test for funnel plot asymmetry showed no significant publi
cation bias (P = 0.25). While the bias coefficient was not statistically 

significant (8.72, 95% CI: -8.53 to 25.97, P = 0.315), the intercept was 
significant (1.94, 95% CI: 0.27 to 3.60, P = 0.023), suggesting potential 
bias despite no strong evidence of small-study effects. (Fig. 8).

Table 1 
Demographic and HGG recurrent characteristics.

Author/ 
Year

Type of study Country No. of 
patients 
in train/ 
test 
group

Recurrence criteria Follow 
up 
(Mo)

Mean 
age 
/female 
%

Inclusion criteria Exclusion criteria Type of treatment Grade 
of 
glioma 
(WHO 
Grade)

S. Rathore et al. 
[14]/ 2018

Retrospective US 31/ 59 Histopathology- 
proven recurrence; 
follow-up MRI 
showing recurrence 
in pre-defined R-ROI

NA 57.05/ 
47.2

Histopathological 
diagnosis of 
glioblastoma, no 
history of prior tumor 
or surgery, and 
availability of 
preoperative and 
postoperative MRI data

Residual tumor after 
surgery

Gross total resection 
followed by 
temozolomide-based 
chemoradiotherapy

IV

S. Bacchi et al. 
[5]/2019

Retrospective Australia 44/ 11 NA NA 56/ 
54.6

NA NA NA III or IV

Chougule et al. 
[15]/2022

Retrospective India 23/ 6 a greater than 25 % 
increase in the sum of 
the products of the 
perpendicular 
diameters of the 
enhancing lesions 
with the smallest 
tumor measurement; 
(b) an appearance of 
any new lesion 
beyond the margin of 
the surgical resection 
in the new location; 
or (c) progressive 
increase in rCBV 
values upon repeat 
imaging

12 NA/ 
17.24

diagnosed with GBM 
based on the 2016 
WHO classifications, 
receiving the standard 
treatment, which 
includes radiotherapy 
with concomitant 
adjuvant temozolomide 
after gross total 
surgical resection of the 
tumor region defined 
by T1 perfusion MRI 
(rCBV maps)22,23; and 
(c) having follow-up 
periods of more than 1- 
year postsurgery

Patients with no 
confirmed histology 
and poor Karnofsky 
Performance Scale 
with poor follow-up

Surgical resection, 
radiotherapy, 
temozolomide

III or IV

Y. Lao et al. 
[16]/2022

Retrospective US 20/ 30 Clinically confirmed 
recurrence through 
MRI scans compared 
to follow-up 
proximity-based 
models

NA 50.5/ 
20

Histologically 
confirmed GBM, Post- 
operative MRI and 
recurrence scans 
available, Follow-up 
scans acquired ≥ 3 
months post-treatment

Poor MRI quality, 
Pseudo-progression 
within 3 months 
post-radiotherapy

Surgical resection 
followed by 
radiotherapy

III or IV

J. Ren et al. 
[8]/2023

Retrospective China 90/ 40 RANO criteria: 
≥ 25 % increase in 
focal enhancement 
or mass effect after 3 
months

> 3 
months

54.4/ 
38

Patients underwent 
surgical treatment, 
pathologically 
confirmed grade II-IV 
gliomas according to 
the 2021 WHO 
classification, treated 
with radiotherapy or 
chemotherapy, 
performed MRI routine 
and contrast-enhanced 
scans after adjuvant 
therapy, and received 
more than 3 months of 
follow-up.

the lesion located 
under the curtain or 
in the brain stem, 
incomplete surgical 
resection, large 
artifacts or poor- 
quality images did 
not meet diagnostic 
requirements, had 
other types of 
central nervous 
system diseases and 
loss of follow-up

Surgical resection 
followed by 
chemoradiotherapy

II-IV

P. Du et al. 
[17]/2023

Retrospective China 98/ 36 Recurrence 
determined based on 
follow-up MRI using 
RANO criteria within 
one year after 
surgery

12 NA/ 62 Age ≥ 18 years, 
Confirmed GBM 
diagnosis, Complete 
tumor resection, pre- 
and post-operative MRI 
data available, 
Standardized post- 
operative therapy

History of brain 
tumors, 
predominantly 
hemorrhagic lesions, 
Incomplete data

Surgical resection, 
followed by 
radiotherapy and 
TMZ chemotherapy

IV

Ch. Jiao et al. 
[18]/2024

Retrospective US 35/ 10 Manual annotation 
of recurrence on 
T1ce, proximity- 
based estimation

NA NA Confirmed GBM 
recurrence, pre-and 
post-surgery MRI 
available, High-risk 
recurrence annotation

Poor MRI quality, 
Missing key MR 
sequences

Surgical resection 
and radiotherapy

IV

Abbreviation: GBM: Glioblastoma, MRI: Magnetic Resonance Imaging, rCBV: Relative Cerebral Blood Volume, T1ce: T1-weighted Contrast-Enhanced, TMZ: Temo
zolomide, WHO: World Health Organization, RANO: Response Assessment in Neuro-Oncology, Mo: Month, ROI: Region of Interest, US: United States.

I. Mohammadzadeh et al.                                                                                                                                                                                                                     Clinical Neurology and Neurosurgery 249 (2025) 108762 

5 



Table 2 
AI algorithms characteristics and performance metrics.

Author/Year Validation Type of 
reference

Input characteristics Selected features Method of 
radiomics

No. of extracted/ 
final (radionics 
features)

Sequences 
analyzed

AI 
algorithm

Best AI 
predictor

Accuracy Sensitivity 
(Recall)

Specificity Precision F1score AUROC

S. Rathore et al. 
[14]/ 2018

Leave-One-Out 
Cross Validation 
(LOOCV)

MRI Radiomics Distance from 
tumor, intensity 
measures, texture 
features, and 
diffusion 
measures

Automated More than 20 
voxel-based 
radiomic features 
from 
multiparametric 
MRI

T1, T1CE, T2, T2- 
FLAIR, DTI, DSC- 
MRI

SVM with 
Gaussian 
kernel

SVM 0.8954 0.9706 0.7673 NA NA 0.91

S. Bacchi et al. 
[5]/2019

5-fold cross- 
validation

MRI Radiomics-based 
features derived from 
MRI sequences

DWI + FLAIR Automated NA DWI, FLAIR, 
Post-contrast T1, 
ADC, 
DWI+FLAIR, 
DWI+Post- 
contrast T1, 
DWI+ADC

CNN CNN 0.82 1 0.6 NA 0.86 0.8

Chougule et al. 
[15]/2022

3-fold 
crossvalidation

MRI Radiomics First-order and 
GLCM features for 
local recurrence, 
GLDM features for 
distant recurrence

Automated 133 T1CE, FLAIR, 
ADC

RF RF 0.714 0.66 0.74 NA NA NA

Y. Lao et al. 
[16]/2022

10-fold cross- 
validation

MRI Voxel-level features 
including intensity, 
proximity to stem cell 
niches (SCN), and 
tumor cavity

High-risk 
recurrence 
regions (HRRs) 
based on SCN and 
tumor cavity 
proximity

Automated NA T1, T1CE, T2, T2- 
FLAIR, ADC

RBF, SVM SVM NA 0.8 NA 0.69 0.73 NA

J. Ren et al. 
[8]/2023

5-fold cross- 
validation

MRI Radiomics 72 key radiomics 
features (38 from 
PoE, 34 from ED)

Automated 1316/ 72 T1WI, CE-T1WI, 
T2WI, T2-FLAIR, 
Multimodality

SVM, KNN SVM 0.9 100 0.933 NA NA 0.965

P. Du et al. 
[17]/2023

3-fold cross- 
validation

MRI Radiomics and 
clinicopathological 
features

12 optimal 
radiomics features 
and 5 clinical 
predictors (age, 
Rad-score, MGMT 
promoter 
methylation, KPS, 
TERT mutation)

Semi- 
automated

4306/12 CE-T1WI, T2- 
Flair, and DWI

DT DT 0.833 0.867 0.81 NA NA 0.719

Ch. Jiao et al. 
[18]/2024

3-fold cross- 
validation

MRI Radiomics features 
derived from multi- 
modal MRI and stem 
cell niche proximity 
estimation

High-risk 
recurrence (HRR) 
features from 
T1ce, proximity 
maps

Automated NA T1, T1ce, T2, 
FLAIR, ADC

MFFE U- 
Net

MFFE U- 
Net

NA 0.85 NA 0.79 0.82 NA

Abbreviation: ADC: Apparent Diffusion Coefficient, AI: Artificial Intelligence, AUROC: Area Under Receiver Operating Characteristic, CE-T1WI: Contrast-Enhanced T1-Weighted Imaging, CNN: Convolutional Neural 
Network, DTI: Diffusion Tensor Imaging, DSC-MRI: Dynamic Susceptibility Contrast MRI, DT: Decision Tree, FLAIR: Fluid-Attenuated Inversion Recovery, GLCM: Gray-Level Co-Occurrence Matrix, GLDM: Gray-Level 
Dependence Matrix, HRR: High-Risk Recurrence, KNN: K-Nearest Neighbors, LOOCV: Leave-One-Out Cross Validation, MGMT: O6-Methylguanine-DNA Methyltransferase, MFFE U-Net: Multi-Feature Fusion and 
Enhancement U-Net, MRI: Magnetic Resonance Imaging, PoE: Predictive Outcome Estimation, RANO: Response Assessment in Neuro-Oncology, RF: Random Forest, Rad-score: Radiomics Score, SCN: Stem Cell Niches, 
SVM: Support Vector Machine, TERT: Telomerase Reverse Transcriptase, TMZ: Temozolomide, T1CE: T1-weighted Contrast-Enhanced, T2-FLAIR: T2 Fluid-Attenuated Inversion Recovery, WHO: World Health 
Organization.
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4.8.1. Quality assessment (PROBAST)
As described in the methods section, the majority of studies 

demonstrated low risk of bias across the four domains (participants, 
predictors, outcomes, and analysis) and application, with 91.53 %, 
93.64 %, 96.90 %, 92.80 %, and 92.74 % respectively. A small per
centage of studies showed high risk in these domains, particularly in the 
predictors and analysis categories, with 6.36 % and 7.20 % respectively. 
No studies were categorized as having an unclear risk of bias (Fig. 9).

4.8.2. Applicability of the ML tools (PROBAST)
Most studies showed low concern across the domains. Specifically, 

98.84 % of studies demonstrated low concern in the participants 
domain, followed by 95.55 % in predictors, 97.57 % in outcomes, 
95.43 % in analysis, and 95.78 % in overall applicability. A smaller 
percentage showed high concern, ranging from 1.16 % to 4.57 %. No 
domain was categorized as having unclear concern (Fig. 10).

5. Discussion

This systematic review and meta-analysis determined the perfor
mance of ML algorithms in detecting recurrent HGG, addressing the 
issue of accurately distinguishing between actual tumor progression and 
treatment-related changes (TRC) on MRI. Based on the results of our 
meta-analysis, a pooled sensitivity of 0.95 and a specificity of 0.80 
indicated that ML algorithms excel at identifying true recurrences while 
maintaining acceptable accuracy in ruling out false positives. The pos
itive likelihood ratio of 4.75 suggests that a positive test result sub
stantially increases the probability of true recurrence. In contrast, the 
low negative likelihood ratio of 0.06 indicates that negative results 
effectively rule out recurrence. The DOR of 80.97 and a diagnostic score 
4.39 further support the algorithms’ strong discriminative ability. The 
area under the ROC curve of 0.86 represents good diagnostic accuracy in 

clinical terms, demonstrating that ML algorithms show considerable 
promise as diagnostic tools for HGG recurrence detection.

The Association for Neuro-Oncology has recommended PET-CT im
aging to be used for treatment response assessment in gliomas, as it has 
higher diagnostic accuracy than MRI in identifying actual tumor pro
gression and TRC [8]. In the early 2010s, thallium-201 SPECT and 
dual-tracer PET imaging approaches achieved moderate diagnostic 
performance, with sensitivities and specificities ranging from 80 % to 
83 %[19,20]. The field progressed by introducing more sophisticated 
tracers, particularly 11C-choline PET/CT, which improved sensitivity to 
100 % but maintained specificity at 70 %[21]. Recent advances in 
FET-PET imaging have further refined these results, achieving a sensi
tivity of 91.6 % with a specificity of 76.9 %[22]. Our meta-analysis of 
ML approaches represents a further evolution in diagnostic capability 
based on conventional MRI or multimodality MRI achieving a balanced 
performance with high sensitivity (95 %) and maintaining good speci
ficity (80 %). Compared with PET-CT, conventional MRI is more avail
able in various hospitals and does not expose patients to ionizing 
radiation[8].

The evolution of MRI-based diagnosis for recurrent HGG has 
demonstrated significant advancement over the past decade. Early dy
namic contrast-enhanced(DCE)-MRI approaches reported seemingly 
perfect diagnostic metrics with 100 % sensitivity and specificity, though 
from a limited patient cohort who had surgery and radiation therapy for 
glioma [23]. The field then progressed toward combining multiple MRI 
sequences with susceptibility-weighted MRI (SWMRI) and dynamic 
susceptibility contrast (DSC) perfusion-weighted imaging (PWI), 
showing a high specificity (100 %) and moderate sensitivity (71.9 %) in 
patients underwent radiation therapy or gamma knife surgery followed 
by resection and developed new measurable enhancement more than six 
months after complete response [24].

DL is a subset of ML approaches that may include artificial neural 

Fig. 3. Performance comparison of machine learning algorithms, including Accuracy, Sensitivity, Specificity and AUROC.
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networks (ANN), convolutional neural networks (CNN) and recurrent 
neural networks (RNN). Radiomics features of patients with a 
histopathologically-confirmed diagnosis of HGG over seven years were 
retrospectively analyzed by the 3D CNN model and validated by 5-fold 
cross-validation, achieving an AUC of 0.80 with the combination of 
DWI+FLAIR in distinguishing progression/recurrence from TRC [5]. 
Radiomics features indicate the high-performing quantitative features 
extracted from medical images, which cannot be recognized by the 
naked eye and may be related to genetic features[17]. Based on a study 
by P. Du et al., the predictive importance of radiomics(rad)-score was 
ranked second, inferior to age, and preceding MGMT promoter 
methylation, preoperative Karnofsky Performance Status (KPS), and 
TERT promoter mutation as important predictive factors for recurrence 
within 1 year after total resection in GBM patients[17]. The rad-score 
was obtained from T1 weighted imaging (T1WI), T2 weighted imaging 
(T2WI), T2-fluid attenuated inversion recovery (T2-Flair), diffusion 
weighted imaging (DWI) and contrast enhanced (CE)-T1WI. Using a DT 
model combining the above predictive factors, the model achieved an 
AUC: 0.850 in the training set and 0.719 in the test set [17]. Glioma 
recurrence involves malignant cells invading healthy brain tissue via the 
vascular network or myelinated white matter (WM) fibers, though the 
factors influencing their pathway choice remain unclear. Predicting 
recurrence location is challenging, but most cases arise in the 
pre-existing peritumoral edema [15]. Another radiomics-based model 
was established from the postoperative enhancement and edema regions 
from four routine MRI sequences including, T1WI, CE-T1WI, T2-FLAIR, 

and T2WI. The results showed that multimodality based on the whole 
region best distinguished recurrence form TRC, compared to each mo
dality alone, with AUC of 0.965 for SVM and 0.955 for KNN [8]. Most of 
the features in this study were derived from CE-T1WI and T2WI. 
CE-T1WI, due to information enhancement after employing contrast 
agents, allowed for assessing of blood-brain barrier impairment. T2WI 
depicted the cellular proliferation state of neighboring tissues through 
free water reaction [8]. However, multimodal radiomics and diffusion 
multicompartment models usually only focus on the pre-existing peri
tumoral edema as the area of probable recurrence, while relapse in 
distant/multifocal locations is not considered [15]. Based on a spatio
temporal radiomics-based trajectory for GBM, a longitudinal radiomics 
analysis based on three to 13 multimodality MRI time points was per
formed using the multimodal voxel wise radiomic features from the 
recurrence areas on FLAIR, diffusion weighted imaging (DWI)-derived 
ADC maps, and T1CE compared with normative WM for each 
pre-recurrence time point and the temporally discriminative features 
[15].

Multiple statistical tools including regression analysis, Deeks’ test, 
and PROBAST quality assessment revealed no significant reporting bias 
and consistently high methodological standards across studies. The 
minimal identified concerns in predictor selection and analysis are 
typical for medical imaging ML studies. These findings validate that the 
superior performance of ML approaches in glioma recurrence detection 
reflects genuine capabilities rather than methodological bias or poor 
study quality.

Fig. 4. Sensitivity and specificity of ML algorithms.
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this study demonstrates the potential of AI-based models, particu
larly SVM, in accurately predicting recurrence in HGG. With high 
sensitivity and specificity, these models show major diagnostic chal
lenges: distinguishing true tumor recurrence from treatment-related 
changes. The findings indicate that machine learning tools must be in
tegrated into clinical workflows to improve diagnostic precision and 
decision-making.

5.1. Limitations

Our study has several limitations. First, the retrospective nature of 
the included studies and our meta-analysis may introduce selection bias 
and limit statistical power. The relatively small sample sizes and 
geographical concentration, primarily in the United States and China, 
restrict generalizability. Second, considerable heterogeneity was 
observed across studies in terms of sensitivity and diagnostic odds ratios, 
driven by variations in study design, methodology, and MRI sequence 
selection. Differences in feature extraction methods and the use of 
diverse machine learning algorithms, ranging from SVM to CNN, further 
complicate direct performance comparisons and standardization of 
metrics. Lastly, the limited number of studies meeting inclusion criteria 

may affect the completeness of our findings. Future research should 
focus on large-scale, multicenter prospective studies with standardized 
methodologies, consistent feature selection, and external validation 
datasets to improve the reliability and clinical applicability of ML 
models for glioma recurrence detection.

6. Conclusion

In conclusion, this systematic review and meta-analysis demon
strates the promising performance of ML models, particularly SVM, in 
detecting glioma recurrence. The pooled diagnostic metrics suggest 
strong potential for clinical application, though prospective multicenter 
validation with standardized protocols remains essential. As research in 
this field continues to evolve, close collaboration among clinicians, ra
diologists, and data scientists is crucial to develop and validate effective, 
clinically applicable models that can improve survival outcomes.
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Fig. 6. Diagnostic score and diagnostic odds ratio of ML algorithms.

Fig. 7. Summary receiver operator characteristic curve (SROC) of ML algorithms.
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Fig. 8. PROBAST chart showing the distribution of risk of bias across the domains of Participants, Predictors, Outcome, and Analysis.

Fig. 9. Deeks’ Funnel Plot asymmetry test for publication bias, displaying the diagnostic odds ratio against 1/root (ESS). The plot includes individual studies (circles) 
and a regression line (dashed).
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