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Abstract
Purpose Adult patients with diffuse lower-grade gliomas (dLGG) show heterogeneous survival outcomes, complicating 
postoperative treatment planning. Treating all patients early increases the risk of long-term side effects, while delayed treat-
ment may lead to impaired survival. Refinement of prognostic models could optimize timing of treatment. Conventional 
radiological features are prognostic in dLGG, but MRI could carry more prognostic information. This study aimed to inves-
tigate MRI-based radiomics survival models and compare them with clinical models.
Methods Two clinical survival models were created: a preoperative model (tumor volume) and a full clinical model (tumor 
volume, extent of resection, tumor subtype). Radiomics features were extracted from preoperative MRI. The dataset was 
divided into training set and unseen test set (70:30). Model performance was evaluated on test set with Uno’s concordance 
index (c-index). Risk groups were created by the best performing model’s predictions.
Results 207 patients with mutated IDH (mIDH) dLGG were included. The preoperative clinical, full clinical and radiomics 
models showed c-indexes of 0.70, 0.71 and 0.75 respectively on test set for overall survival. The radiomics model included 
four features of tumor diameter and tumor heterogeneity. The combined full clinical and radiomics model showed best per-
formance with c-index = 0.79. The survival difference between high- and low-risk patients according to the combined model 
was both statistically significant and clinically relevant.
Conclusion Radiomics can capture quantitative prognostic information in patients with dLGG. Combined models show 
promise of synergetic effects and should be studied further in astrocytoma and oligodendroglioma patients separately for 
optimal modelling of individual risks.
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Introduction

Adult-type diffuse lower-grade gliomas (dLGG) refer to 
IDH mutated (mIDH) astrocytoma and oligodendroglioma 
WHO grade 2 and 3 [1–3]. Treatment of dLGG is multi-
modal and includes surgery, radiotherapy, chemotherapy, 
and now also possibly mIDH inhibitors [4, 5].

The postoperative treatment planning in patients with 
dLGG is connected to prognostic factors. Such risk factors 
are typically a combination of patient, radiological, and 
molecular information (astrocytoma or oligodendroglioma) 
[5]. As a significant proportion of patients with dLGG live 
more than 15 years, early oncological treatment has the 
potential to cause long-term harm [6–8]. On the other hand, 
withholding early oncological treatment may miss a win-
dow of opportunity and be prognostically disadvantageous. 
As such, optimal timing of postoperative treatment for the 
individual can balance the risk of adverse events while aim-
ing for long-term survival.

Different prognostic models have been frequently used 
over the years [9–13]. Following the Radiation Therapy 
Oncology Group (RTOG) 9802 trial [14], age and residual 
tumor after resection have been used in oncological treat-
ment selection. However, the risk factor of higher age is 
confounded by IDH wild type gliomas in the old classifica-
tion scheme. Still, in some centres, this has led to a large 
proportion of patients with mIDH dLGG receiving imme-
diate postoperative treatment [15]. A recent large study in 
the molecular era confirmed molecular subgroup and MRI-
defined tumor volume (pre- and postoperative) as impor-
tant prognostic factors [16]. However, MRI carries more 
information that potentially can refine the prognostication 
in patients with dLGG [17].

With radiomics, the extraction of mathematical features 
from MRI can be used for prognostication purposes [18, 
19]. Radiomics features go beyond classic image interpreta-
tion and may capture properties not directly seen by the eye. 
Another benefit is that MRI covers the entire tumor as well 
as the adjacent infiltrated brain [20–22], not only a small 
biopsy.

The aim of this study was to compare radiomics survival 
models to relevant clinical survival models. Importantly, 
our focus was to find out if the radiomics model offers prog-
nostic information in addition to the clinical information, 
to better understand the net gain of more complex models.

Materials and methods

Patient population

Patients with glioma of WHO grade 2 and 3 with mIDH and 
known 1p19q status were included from three Swedish Uni-
versity Hospitals with population-based uptake areas. The 
patients had undergone primary surgery in the period from 
2007 to 2020. Clinical data was extracted from electronical 
health records. Patients were only included if the following 
preoperative MRI sequences were available: T1 with con-
trast enhanced (T1c) and fluid attenuated inversion recovery 
(FLAIR).

The patients were divided into training and test sets with 
ratio 70:30 using the Python programming language ver-
sion 3.8.3 (Python Software Foundation). For details, see 
the Supplementary material Section S.1.1.

Clinical survival models

The definition of dLGG and their subtypes has changed 
over the years [1, 23, 24]. Thus, clinical variables associ-
ated with survival are somewhat heterogeneous in different 
patient cohorts [3, 6, 9–13, 16]. We decided to build prog-
nostic models based on recent evidence, reflecting the situa-
tion today [16]. Two parallel survival models were created: 
a preoperative clinical model (preoperative tumor volume) 
and a full clinical model (preoperative tumor volume, extent 
of resection and tumor subtype) containing variables avail-
able in the early postoperative phase, prior to decision of 
oncological treatment strategy.

Image annotations

The tumor volume was quantified from tumor segmenta-
tion. The process of tumor segmentation was done semi-
automatically using 3DSlicer [25], as described in previous 
work [26].

The extent of resection was defined as biopsy (no tumor 
reduction), partial resection, or complete resection (no 
FLAIR residue). Postoperative tumor volume was not avail-
able for all patients. For patients missing postoperative 
MRI, the extent of resection variable was decided from the 
surgical notes and later MRI. A sensitivity analysis on the 
full clinical model performance was made by replacing the 
extent of resection variable in the model with the postopera-
tive tumor volume.
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Radiomics survival models

Image preprocessing

The preoperative MRI sequences and tumor segmentations 
were linearly registered to the MNI-space as previously 
described [27]. Registered images were visually controlled 
and re-registration by adjustment of registration parameters, 
or manual registration was applied when needed.

Four radiomics survival models were built by feature 
extraction from one of four chosen tumor-related volu-
metric zones: (1) tumor zone (segmentation), (2) the peri-
tumoral zone − 5 to 5 mm around the tumor segmentation 
edge, (3) the peritumoral zone 0 to 10 mm outside the seg-
mented tumor, (4) the peritumoral zone 10 to 20 mm outside 
the segmented tumor [20, 22]. Segmentations of the peri-
tumoral zones were automatically extracted, see specifica-
tions and visualization of the zones in the Supplementary 
material Section S.1.2.

Image feature extraction, selection and learning

Radiomics features were extracted using pyradiomics [28]. 
The included features were shape features, first-order and 
second-order features (see the Supplementary material Sec-
tion S.1.3 for all screened features). The features were cal-
culated on images with no applied filters. Every feature was 
normalized [29] using z-score normalization, separately for 
training and test sets, and separately for every tumor and 
peritumoral zone and separately for both MRI sequences. 
The feature selection on the training set was applied by 
firstly removing features with variance < 0.01. Secondly, for 
each pair of features with a Spearman’s correlation ≥ 0.95, 
the feature with the highest mean correlation with all other 
features was removed. Thirdly, LASSO-Cox regression was 
applied for the last feature selection, learning and the cre-
ation of radiomics survival models. Specifications are sup-
plied in the Supplementary material Section S.1.4.

Survival model interpretability

The features from the best performing radiomics model 
were interpreted using the explanations in pyradiomics. Fur-
ther, chosen survival models were explained using SHapley 
Additive exPlanations (SHAP) [30], which was also clini-
cally interpreted. See specifications in the Supplementary 
material Section S.1.5.

Statistics

IBM SPSS Statistics versions 29 or newer (IBM Corp., 
Armonk, NY, USA) were used for data evaluation and 

statistical testing. Data normality was evaluated visually, 
and statistically using the Kolmogorov-Smirnov normality 
test. Group comparisons were done using Mann-Whitney 
U-test for continuous data and Fisher’s exact test for cate-
gorical data. Clinical and combination survival models were 
created by Cox regression using the Python lifelines library 
[31], more details are available in the Supplementary mate-
rial Section S.1.6.

Prognostication performance evaluation

Survival model performance was primarily evaluated 
using Uno’s concordance index (c-index) [32] in Python. 
The c-index ranges between zero and one, one meaning a 
perfect patient survival ranking ability. Uno’s c-index was 
also evaluated for patients with observed time up to 5 years 
(tau = 5), i.e. how well the model estimates in poor prog-
nosis. A c-index value distribution was built by bootstrap-
ping described in the Supplementary material Section S.1.7. 
The chosen survival models were statistically compared by 
applying Wilcoxon signed rank test on the models’ c-index 
distributions, for each c-index variant separately. To facili-
tate comparison with other studies, the model performance 
was also evaluated using the more traditionally applied Har-
rell’s c-index [33]. However, Harrell’s c-index is not ideal 
for data with high proportion of censoring. Uno’s c-index is 
designed to adjust for censoring, which was more appropri-
ate for evaluating the model performance on our data.

High- and low-risk groups

Patients were divided into high- and low-risk groups using 
the calculated risk scores by the best performing survival 
model. Risk threshold to define the risk groups was cal-
culated on the entire cohort by maximizing the separation 
between Kaplan-Meier survival curves using log-rank test 
statistic. A minimal risk group size was set to 33% of the 
cohort. Specifications are supplied in the Supplementary 
material Section S.1.8. The separation between the Kaplan-
Meier survival curves of the resulting high- and low-risk 
groups was decided by the log-rank test.

Results

Patient characteristics

In total 207 patients with mIDH gliomas were included in 
the study. 143 patients from Sahlgrenska University Hos-
pital, 39 patients from Uppsala University Hospital and 25 
patients from Karolinska University Hospital. The cohort 
characteristics are supplied in the Supplementary Table S1. 
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Statistical comparison: radiomics compared to clinical 
models

The models’ c-index distributions were compared pair-
wise using Wilcoxon signed rank test, separately for Uno’s 
c-index and Uno’s c-index at 5 years. The radiomics model 
showed statistically significantly better performance than 
both clinical models in overall survival prediction (Uno’s) 
and in short-term prediction (Uno’s at 5y). All comparisons 
p < 0.001.

Statistical comparison: combined models compared to 
radiomics and clinical models

Addition of radiomics features to each of the clinical mod-
els significantly improved the prediction performance. The 
combined models showed significantly better performance 
than radiomics alone as well. The combined full clinical and 
radiomics model showed significantly better performance 

No significant differences were found between the training 
and test set characteristics, as reported in Table 1.

Survival model performance

Survival model results are presented in Table 2. Results 
using the more traditional c-index (Harrell’s) can be found 
in the Supplementary material Section S.2.2.

The radiomics models with best c-index values were the 
radiomics model based on the tumor zone, followed by the 
radiomics model based on the peritumoral zone 0–10 mm. 
The best performing radiomics tumor zone model will be 
referred to as the radiomics model in the text below and 
this was the model which was combined with the clinical 
models.

Table 1 Training and test demographics, patient characteristics, tumor characteristics, treatment and survival
Variable Training

(n = 144)
Test
(n = 63)

p-valuea

Age at surgery, median (Q1, Q3) 40.5 (33.0, 50.0) 38.0 (32.0, 50.0) 0.37
 Age > 40, n (%) 72 (50.0) 27 (42.9) 0.37
KPSb < 80 at admission, n (%) 24 (16.7) 12 (19.0) 0.69
Tumor volume, ml, median (Q1, Q3) 53.8 (27.5, 116.8) 54.8 (22.8, 81.9) 0.31
Surgery
 Biopsy, n (%) 11 (7.6) 7 (11.1) 0.43
 Partial resection, n (%) 103 (71.5) 44 (69.8) 0.87
 Complete resection, n (%) 30 (20.8) 12 (19.0) 0.85
WHO classification
 Grade 2, n (%) 99 (68.8) 44 (69.8) 1.00
 Grade 3, n (%) 45 (31.3) 19 (30.2) 1.00
 Astrocytoma, n (%) 72 (50.0) 35 (55.6) 0.55
 Oligodendroglioma, n (%) 72 (50.0) 28 (44.4) 0.55
Oncological treatment
 Radiotherapy (within 6 months), n (%) 82 (56.9) 32 (50.8) 0.62
 Chemotherapy (within 6 months), n (%) 72 (50.0) 26 (41.3) 0.29
Survival
 Censored, n (%) 109 (75.7) 47 (74.6) 0.32
a Mann-Whitney U test, Fisher’s exact test, b Karnofsky performance status scale

Table 2 Results for each survival model on the test set (n = 63)
Survival model Selected features

N
Test
Uno’s c-index
median (IQR)

Test
Uno’s at t ≤ 5y
median (IQR)

Preoperative Clinical 1 0.700 (0.120) 0.697 (0.117)
Full Clinical 3 0.714 (0.124) 0.738 (0.132)
Radiomics Tumor 4 0.754 (0.123) 0.776 (0.092)
Radiomics PTZ ± 5 mm 4 0.663 (0.132) 0.655 (0.130)
Radiomics PTZ 0–10 mm 1 0.725 (0.145) 0.755 (0.103)
Radiomics PTZ 10–20 mm 30 0.663 (0.123) 0.707 (0.127)
Combined: Preop Clinical + Radiomics 1 + 4 0.769 (0.117) 0.799 (0.088)
Combined: Full Clinical + Radiomics 3 + 4 0.793 (0.116) 0.813 (0.090)
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radiomics model is provided in the Supplementary material 
Section S.2.5.

Interpretation of the models using SHAP

SHAP results of feature contribution within the full clini-
cal and the radiomics models are shown in Fig. 2. In the 
full clinical model, tumor subtype was the most impactful 
feature for risk prediction. Largest tumor volume values 
increased the patients’ risk more than the lowest values 
decreased the risk in the full clinical model. A similar trend 
was seen in the radiomics model regarding the tumor het-
erogeneity variables on T1c and FLAIR. The most impact-
ful feature in the radiomics model was the largest 2D axial 
tumor diameter.

Survival risk groups

High- and low-risk patient groups were created using the 
combined full clinical and radiomics survival model’s risk 
scores. Kaplan-Meier plots for the entire cohort and within 
tumor subtypes are visualized in Fig. 3. Characteristics of 
the high- and low-risk groups of the cohort are supplied in 
the Supplementary Table S.5.

Discussion

In this study, radiomics modelling identified preoperative 
MRI-based prognostic features with superior performance 
compared to clinical models. The radiomics features carry-
ing prognostic information were related to tumor diameter 

than the combined preoperative clinical and radiomics 
model. Uno’s: p < 0.001, Uno’s at 5y: p < 0.001 for all 
comparisons.

Sensitivity analysis: postoperative tumor volume

The full clinical model was re-trained with extent of resec-
tion replaced with postoperative tumor volume where this 
was available (training n = 129, test n = 57). This model 
showed the performance of 0.631 for overall survival 
(Uno’s) and 0.745 for short-term survival (Uno’s at 5y) on 
test set. More details are presented in the Supplementary 
material Section S.2.3.

Survival model interpretability

Interpretation of the radiomics features

The radiomics model resulted in four optimal features for 
survival prediction (the technical names are provided in 
the Supplementary material Section S.2.4). The two tumor 
diameter features were the largest 2D axial tumor diameter 
and the largest 3D tumor diameter (Feret diameter). The 
other two features are the same feature on T1c respectively 
FLAIR, which represents the amount of heterogeneity in 
the tumor based on the lengths of consecutive grey level 
pixel values in the image. Case examples of the heterogene-
ity feature are visualized in Fig. 1. For better readability in 
text, the four optimal radiomics features will be referred to 
as radiomics features of tumor diameter and tumor hetero-
geneity. The additional value of the diameter and heteroge-
neity features separately in the combined full clinical and 

Fig. 1 Visualization of 12 case examples of the radiomics tumor het-
erogeneity feature. (a1-3) visualizes patients with high values of the 
feature on T1c, (b1-3) patients with low values on T1c. (c1-3) visual-
izes patients with high values of the feature on FLAIR, (d1-3) patients 

with low values on FLAIR. Note that segmentations are done in 
FLAIR/T2-weighted images and may appear larger than the volume 
depicted in T1c images
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Fig. 2 Survival model interpretability. Feature importance and distribution on the test set by the (a) full clinical survival model, and (b) radiomics 
survival model. Positive SHAP values indicate increased risk whereas negative values indicate reduced risk
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biological analyses of tumor samples not taking the entire 
tumor volume into account. The MRI-based heterogene-
ity feature is therefore an inherent strength of radiomics. A 
recent study [37] investigated inter- and intra-observer vari-
ability in the subjective assessment of tumor heterogeneity 
on T2-weigthed MRI for tumor classification and found 
varying (moderate to very good) agreement. Quantitative 
heterogeneity measure as used in our study is potentially 
a superior method, as it is reproducible and unbiased. Our 
radiomics model selected heterogeneity on both FLAIR and 
T1c for the prognostic model. Qualitatively assessed con-
trast enhancement on T1c has been shown as a prognostic 
factor for dLGG in different tumor classification eras [38–
40], and most recently it was found as prognostic for astro-
cytomas in particular [40]. Contrast enhancement might be 

and heterogeneity, and we present their relative importance 
compared to the traditional variables for patients with 
dLGG. Combining the early postoperative clinical features 
with radiomics features further improved the prognostic 
performance of the model. The combined model success-
fully stratified patients into high- and low-risk groups.

In previous studies, designed by the older WHO classifi-
cation of dLGG and including a mixture of mIDH and IDH 
wild type gliomas, radiomics has performed well in survival 
prediction [34–36]. This was also seen in our study on mIDH 
dLGG. The features found by the radiomics model relate to 
recent findings in research and point to future directions to 
build an optimal model for prognostication in dLGG. The 
feature connected to tumor heterogeneity in our radiomics 
model is interesting. Histological tumor heterogeneity is 
a well-known concept in dLGG, imposing a limitation on 

Fig. 3 Kaplan-Meier survival curves of high- and low-risk patient groups within (a) entire patient cohort, (b) patients with astrocytoma, and (c) 
patients with oligodendroglioma
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not available, and the estimated extent of resection might 
have affected the clinical model performance. Furthermore, 
the highest event rate is in astrocytomas, and therefore the 
survival models may be more tuned to fit this subgroup. 
This is in line with most oligodendrogliomas being assigned 
to the low-risk group, and the stratification into high- and 
low-risk is therefore at present more useful in patients with 
astrocytomas. We used Uno’s c-index to counteract censor-
ing in the model performance evaluation, yet the evaluation 
could be further improved by testing the model perfor-
mance on an external and larger cohort. For future stud-
ies, we also recommend validating the prognostic variables 
within dLGG subtypes and using data with longer follow-
up times, especially for patients with oligodendroglioma. 
Additionally, we encourage to explore radiomics on other 
MRI sequences and postoperative images in future studies 
for potential model refinement.

Conclusions

Radiomics could identify MRI-based prognostic factors, 
which improved the prognostication performance. Beyond 
shape-related variables, heterogeneity of the tumor holds 
complementary prognostic information to the traditional 
variables in mIDH dLGG. Further research is needed to 
optimize prognostic models in dLGG to facilitate treatment 
planning in patients with dLGG.
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reflected in the heterogeneity feature on T1c, although no 
clear indication for this is seen in Fig. 1.

The two tumor diameter features, largest 2D axial and 
largest 3D tumor diameters, were the strongest prognostic 
factors in the radiomics model. Although this may overlap 
considerably with volume in the clinical model, the com-
bined model did show improved results. We hypothesize 
that this improvement could be due to importance of tumor 
shape and growth. Tumor shape has been found to offer 
prognostically relevant information in both glioblastomas 
and meningiomas [41, 42]. In both situations, a non-spher-
ical (irregular) shape, calculated by the tumor surface area 
and volume, has shown to be a factor of unfavourable prog-
nosis. In our study, the sphericity feature was not chosen by 
the radiomics selection process for dLGG prognostication. 
The relation between the 2D and 3D diameters and volume 
could reflect a branching shape, which might be an indi-
rect measure of dLGG infiltration along the white matter 
tracts [21, 43]. In future studies on dLGG, we encourage to 
consider the prognostic impact of tumor shape and growth, 
rather than tumor volume alone.

Our results confirm that MRI features with clinically rel-
evant information, beyond traditional image interpretation, 
can be extracted quantitatively and already at the preopera-
tive phase for patients with dLGG. The combined model 
was able to identify high- and low-risk patients, which 
is of important clinical relevance. However, how to opti-
mally combine the clinical and radiomics features should be 
investigated further in future studies. For potential clinical 
implementation, the radiomics feature extraction is judged 
as a relatively fast process once the software is set up, pro-
vided that segmentation of the tumor is available. The lat-
ter will likely become increasingly available, facilitated by 
automated segmentations [44].

The major strengths of our study are that the survival 
models have been based on a pure mIDH dLGG cohort, and 
that the results are presented in an unseen test set. Further-
more, the radiomics model has been compared to clinical 
models including factors accounted for in daily practice. 
Including both WHO grade 2 and 3 gliomas could poten-
tially impact results. Although the literature is mixed con-
cerning the impact of WHO grade 3 versus grade 2 in mIDH 
gliomas [3, 45–48], we and others have demonstrated that 
survival is strikingly similar [3, 45, 46], but treatment inten-
sity may differ [3, 47]. Thus, we considered it more impor-
tant to increase the sample size than to present WHO grades 
separately. Of note, the high- and low-risk groups in this 
study had similar proportions of WHO grade 3, indicating 
minimal impact. Another limitation is that the power in 
studying mortality in patients with dLGG was modest given 
the relatively long survival times in this group. For some of 
the longest living patients, postoperative tumor volume was 
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