Nat Cancer. 2025 Feb 5. doi: 10.1038/s43018-025-00905-6. Online ahead of print. ## FLASH radiation reprograms lipid metabolism and macrophage immunity and sensitizes medulloblastoma to CAR-T cell therapy ``` Haiwei Ni ^{# 1}, Zachary J Reitman ^{# 2}, Wei Zou ¹, Md Naushad Akhtar ¹, Ritama Paul ¹, Menggui Huang ¹, Duo Zhang ¹, Hao Zheng ¹, Ruitao Zhang ¹, Ruiying Ma ¹, Gina Ngo ¹, Lin Zhang ³, Eric S Diffenderfer ¹, S Azar Oliaei Motlagh ¹, Michele M Kim ¹, Andy J Minn ^{1 4}, Jay F Dorsey ¹, Jessica B Foster ⁵, James Metz ¹, Constantinos Koumenis ^{1 4}, David G Kirsch ^{6 7 8 9}, Yanqing Gong ¹⁰, Yi Fan ^{11 12} ``` **Affiliations** PMID: 39910249 DOI: 10.1038/s43018-025-00905-6 ## **Abstract** FLASH radiotherapy holds promise for treating solid tumors given the potential lower toxicity in normal tissues but its therapeutic effects on tumor immunity remain largely unknown. Using a genetically engineered mouse model of medulloblastoma, we show that FLASH radiation stimulates proinflammatory polarization in tumor macrophages. Single-cell transcriptome analysis shows that FLASH proton beam radiation skews macrophages toward proinflammatory phenotypes and increases T cell infiltration. Furthermore, FLASH radiation reduces peroxisome proliferator-activated receptor- γ (PPAR γ) and arginase 1 expression and inhibits immunosuppressive macrophage polarization under stimulus-inducible conditions. Mechanistically, FLASH radiation abrogates lipid oxidase expression and oxidized low-density lipid generation to reduce PPAR γ activity, while standard radiation induces reactive oxygen species-dependent PPAR γ activation in macrophages. Notably, FLASH radiotherapy improves infiltration and activation of chimeric antigen receptor (CAR) T cells and sensitizes medulloblastoma to GD2 CAR-T cell therapy. Thus, FLASH radiotherapy reprograms macrophage lipid metabolism to reverse tumor immunosuppression. Combination FLASH-CAR radioimmunotherapy may offer exciting opportunities for solid tumor treatment. © 2025. The Author(s), under exclusive licence to Springer Nature America, Inc. PubMed Disclaimer 1 di 1