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Abstract 39 

High-grade gliomas (HGGs), including glioblastoma (GBM) in adults and diffuse intrinsic pontine 40 
glioma (DIPG) in children, are among the most aggressive and deadly brain tumors. A key factor in 41 
their resilience is the presence of glioma stem cells (GSCs), which drive tumor initiation, progression, 42 
and resistance to treatment. Targeting and eradicating GSCs holds potential for curing both GBM and 43 
DIPG. Natural Killer (NK) cells, as part of the innate immune system, naturally recognize and destroy 44 
malignant cells. Recent advances in NK cell-based therapies, such as chimeric antigen receptor (CAR)-45 
NK cells, NK cell engagers, and NK cell-derived exosomes, offer promising approaches for treating 46 
GBM and DIPG, particularly by addressing the persistence of GSCs. This review highlights these 47 
advancements, explores challenges such as the brain-blood barrier and the immunosuppressive tumor 48 
microenvironment, and proposes future directions for improving and clinically advancing these NK 49 
cell-based therapies for HGGs. 50 
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Introduction 76 

High-grade gliomas (HGGs) are a group of highly aggressive and often fatal brain tumors, affecting 77 
both adults and children1,2. Classified as grade 3 or 4 based on their level of malignancy and growth 78 
rate3, these tumors include some of the most dangerous forms of gliomas, such as glioblastoma (GBM) 79 
in adults and diffuse intrinsic pontine glioma (DIPG) in children. GBM causes over 15,000 deaths 80 
annually in the United States4. Standard treatment includes surgical resection followed by radiation and 81 
temozolomide (TMZ) chemotherapy5-7. However, despite these interventions, the prognosis remains 82 
bleak, with a median survival of less than 15 months8,9. DIPG, primarily affecting children between 83 
ages 5 and 10, is equally devastating. This inoperable brainstem tumor, located in the pons, presents 84 
with severe neurological symptoms and shares the resistance of GBM to radiation and chemotherapy. 85 
The median survival time for DIPG is less than one year10,11. A major contributor to the persistence and 86 
recurrence of both GBM and DIPG is the presence of glioma stem cells (GSCs)12,13. GSCs are highly 87 
efficient at initiating and sustaining tumor growth and showing resistance to standard therapies14-16. 88 
Targeting and eliminating GSCs could offer a potential cure for both GBM and DIPG. 89 

Natural Killer (NK) cells, key players in the innate immune system, have gained attention for their 90 
ability to target and eliminate cancer cells without prior sensitization9,17. Previous research suggests that 91 
NK cells preferentially attack stem-like cancer cells over differentiated ones18. Present in the 92 
microenvironment of both GBM and DIPG19-22, NK cells exert cytotoxic effects independent of cancer 93 
cell proliferation, making them effective against both proliferating and dormant GSCs. Recent advances 94 
in NK cell-based therapies, such as chimeric antigen receptor (CAR)-NK cells, NK cell engagers, and 95 
NK-derived exosomes, show great potential in eradicating cancer cells across various types, offering a 96 
promising strategy to improve outcomes in HGGs like GBM and DIPG. 97 

This review provides an in-depth analysis of GBM and DIPG, focusing on the challenges their 98 
aggressive nature and treatment resistance present, particularly due to the role of GSCs. It discusses the 99 
function of NK cells within the tumor microenvironment and highlights recent advances in NK cell-100 
based cancer therapies. Additionally, it identifies the obstacles in advancing NK cell therapies and 101 
explores future directions for combating HGGs in both adult and pediatric patients. 102 

 103 

GBM and GSCs  104 

GBM is the most prevalent and lethal form of malignant brain tumor in adults, accounting for nearly 105 
half of all primary brain tumors16,23. Its aggressive behavior poses significant treatment challenges. 106 
GBM typically arises in the cerebral hemispheres, most often affecting the frontal and temporal lobes, 107 
though it can occur in other regions, including the parietal and occipital lobes4,23,24. The location of 108 
tumor often dictates clinical symptoms such as headaches, seizures, cognitive impairment, and motor 109 
deficits. It can develop as a primary tumor, arising without a preceding lower-grade glioma (LGG), or 110 
as a secondary tumor, evolving from pre-existing LGG. A key molecular marker is the mutation status 111 
of the isocitrate dehydrogenase (IDH) gene. IDH-mutant GBMs, which often arise from LGG, are less 112 
aggressive, while the more common IDH-wild type GBMs are associated with poorer prognosis25-27. 113 

The Cancer Genome Atlas (TCGA) classifies GBMs into three primary molecular subtypes: proneural 114 
(PN), classical (CL), and mesenchymal (MES). These subtypes, distinguished by specific genetic 115 
alterations, differ in clinical behavior and drug response, contributing to the failure of multimodal 116 
therapies like radiotherapy, chemotherapy, and targeted treatments6,7,27. For instance, EGFR 117 
amplification and mutations are common in the CL subtype, while the MES subtype is linked to NF1 118 
mutations and increased immune cell infiltration28-30. However, recent single-cell RNA sequencing 119 
(scRNA-seq) studies have revealed that these subtypes are not strictly compartmentalized within 120 
individual tumors. Multiple subtypes may coexist within different regions of the same tumor, and the 121 
molecular characteristics can shift over time and in response to treatment. For the GBM cells, scRNA-122 
seq has identified four cellular states: (1) neural-progenitor-like (NPC-like), (2) oligodendrocyte-123 
progenitor-like (OPC-like), (3) astrocyte-like (AC-like), and (4) mesenchymal-like (MES-like)13,28,31,32. 124 

Jo
urn

al 
Pre-

pro
of



These cellular states align with the TCGA subtypes, with the CL and MES subtypes corresponding to 125 
the AC-like and MES-like states, while the PN subtype aligns with the OPC-like and NPC-like states. 126 
This phenotypic plasticity, where tumor cells can switch between states in response to genetic mutations 127 
or environmental changes, poses a great challenge for treatment. Targeting a single subtype is often 128 
insufficient, as GBM tumors are composed of cells in multiple cellular states that can adapt and evolve 129 
throughout therapy13,16. 130 

Central to the persistence and recurrence of GBM are GSCs, which exhibit stem cell-like properties 131 
such as self-renewal and the ability to differentiate into various tumor cell types9,33,34. They utilize 132 
mechanisms like enhanced DNA repair, drug efflux, and quiescence to evade treatments, positioning 133 
them as critical drivers of tumor progression and relapse27,33,35. GSCs thrive in hypoxic environments, 134 
which enhance their survival and promote tumor growth. Key molecular markers that identify GSCs 135 
include CD13336-38, a transmembrane glycoprotein linked to increased tumorigenic potential and 136 
treatment resistance; SOX239-41, a transcription factor vital for maintaining cell stemness and plasticity; 137 
Nestin42-44, an intermediate filament protein associated with neural progenitor-like states and tumor 138 
invasiveness; CD4445-47, a cell surface glycoprotein that serves as a receptor for hyaluronic acid, 139 
facilitating cell-cell interactions, adhesion, and migration within the extracellular matrix; ALDH 140 
(Aldehyde Dehydrogenase)48,49, a family of enzymes essential for detoxifying aldehydes by converting 141 
them into carboxylic acids; and OLIG250-53, a transcription factor important for oligodendrocyte 142 
development. However, the search for universal GSC markers remains controversial, primarily due to 143 
significant interpatient and intratumoral variability. Recent advances in scRNA-seq have revealed four 144 
primary GSC cellular states in GBM: NPC-like, OPC-like, AC-like, and MES-like, each associated with 145 
distinct stemness markers13,28,31,32. Specifically, CD133 is linked to OPC-like cells, CD24 to NPC-like 146 
cells, and CD44 to MES-like cells. This phenotypic plasticity, along with genetic alterations in EGFR, 147 
PDGFRA, CDK4, and NF1, influences GSC behavior, allowing them to further evade therapeutic 148 
interventions and contribute to tumor regeneration. 149 

 150 

DIPG and GSCs  151 

DIPG is among the deadliest pediatric brain tumors, representing about 10-15% of brain tumors in 152 
children. Following diagnosis, the median survival time is around 11 months, and fewer than 10% of 153 
patients survive beyond two years54-57. DIPG is located in the pons, a crucial part of the brainstem that 154 
regulates essential functions such as breathing, heart rate, sleep, and motor control. As a result, DIPG 155 
significantly disrupts these processes, leading to severe neurological symptoms. The invasive DIPG 156 
cells distort and destroy nerve fibers, further contributing to neurological decline58. Due to its infiltrative 157 
nature and brainstem location, DIPG is extremely difficult to treat surgically59-61. Current therapies like 158 
chemotherapy have been largely ineffective because of the inherent resistance of the tumor, while 159 
radiotherapy provides only temporary relief, extending survival by just a few months without stopping 160 
tumor progression56,62. This dismal prognosis highlights the urgent need for new therapeutic approaches.  161 

One of the key genetic alterations driving the behavior of DIPG is the H3K27M mutation, found in 162 
about 70-80% of cases. These tumors, now classified as Diffuse Midline Glioma (DMG)63,64, H3K27-163 
altered, are characterized by a mutation in the histone H3 gene. This mutation disrupts normal chromatin 164 
regulation by inhibiting polycomb repressive complex 2 (PRC2), causing a global loss of H3K27 165 
trimethylation and leading to widespread gene expression dysregulation59,60. Recent scRNA-seq studies 166 
have identified three distinct cell states in H3K27M DIPG: OPC-like, oligodendrocyte (OC)-like, and 167 
AC-like13,65,66. Notably, OPC-like cells, which represent undifferentiated progenitors, account for up to 168 
~80% of the tumor population, indicating a differentiation block and highlighting the aggressive nature 169 
of the disease. Additionally, 20-30% of DIPG cases lack both the H3K27M and IDH mutations. These 170 
tumors are classified as DIPG, H3 wildtype, and IDH wildtype63, but their underlying genetic drivers 171 
remain less understood, underscoring the need for further research into these subgroups. 172 
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A growing body of research has identified GSCs as key drivers of aggressiveness and treatment 173 
resistance in H3K27M DIPG. The H3K27M mutation disrupts the normal differentiation of OPCs by 174 
inhibiting PRC2 function, leading to an accumulation of undifferentiated cells66,67. A distinct stem-like 175 
profile has been observed in H3K27M-altered DIPG cells, which show elevated expression of stem cell 176 
markers such as Bmi1, Nestin, CD15, and SOX267-69. These markers, associated with self-renewal and 177 
stem cell maintenance, suggest that these tumors retain significant stem-like characteristics. DMG cell 178 
lines like HSJD-DIPG-007 and HSJD-DIPG-012 demonstrate a strong capacity for self-renewal and 179 
can form neurospheres from a single cell, further supporting their stem-like behavior67. SOX2, a key 180 
transcription factor that regulates stem cell pluripotency, is notably overexpressed in these cells15,39-41. 181 
This stem-like profile, combined with the impact of mutation on chromatin and epigenetic regulation, 182 
underscores the aggressive nature of GSCs and highlights the challenges in developing effective 183 
therapies. 184 

 185 

NK Cells in Tumor Microenvironment 186 

NK cells are a vital component of the innate immune system, uniquely capable of identifying and 187 
eliminating virally infected or tumor cells, making them a critical first line of defense17,70-73. They 188 
originate from lymphoid progenitors in the bone marrow and circulate in the bloodstream. NK cells are 189 
characterized by the expression of CD56 and the absence of CD3, which distinguishes them from T 190 
cells. They are categorized into two subsets: CD56bright CD16dim/− cells and CD56dim CD16+ cells. 191 
CD56bright CD16dim/− cells are primarily located in lymphoid tissues and are known for producing 192 
cytokines such as IFN-γ, which play a pivotal role in modulating both adaptive and innate immune 193 
responses. These cells are not inherently cytotoxic but can exhibit cytotoxicity following activation74-194 
76. In contrast, CD56dim CD16+ cells, predominantly found in peripheral blood, are well-known for their 195 
potent cytotoxicity and their ability to induce apoptosis in target cells.  196 

NK cells function by integrating signals from two types of surface receptors: activating and inhibitory 197 
receptors (Figure 1). Activating receptors, such as NKG2D, NKp30, NKp46, and DNAM-1, trigger NK 198 
cell activation by recognizing stress-induced ligands or pathogen-associated molecules on abnormal 199 
cells, enabling the elimination of cancer cells and virus-infected cells. In contrast, inhibitory receptors, 200 
including CD94/NKG2A and LILRs, recognize self-molecules like major histocompatibility complex 201 
(MHC) class I proteins on healthy cells, delivering "don’t kill" signals to prevent damage to normal 202 
tissues. The "missing self" theory77-79 further explains that NK cells can recognize and target cells that 203 
lack these self-MHC class I molecules, as their absence removes the inhibitory signals, prompting NK 204 
cell activation. This balance between activating and inhibitory signals ensures that NK cells efficiently 205 
target diseased cells while maintaining immune tolerance and preventing autoimmunity9,80,81 (Table 1). 206 
Tumor cells often evade T cells by downregulating MHC class I, making them more susceptible to NK 207 
cell-mediated killing. Once activated, NK cells release cytotoxic granules containing perforin, which 208 
forms pores in the target cell membrane, and granzymes, which enter the cell to induce apoptosis. 209 
Additionally, NK cells can trigger apoptosis through death receptor signaling, where TNF-related 210 
apoptosis-inducing ligand (TRAIL) or Fas ligand (FasL) expressed on NK cells (Figure 1) binds to 211 
corresponding receptors on target cells, activating apoptotic pathways. NK cells also secrete cytokines 212 
like IFN-γ, which recruit other immune cells and modulate adaptive immunity. Another key mechanism 213 
is antibody-dependent cellular cytotoxicity (ADCC), where NK cells, via their Fcγ receptor CD16, bind 214 
to the Fc region of IgG antibodies on target cells, triggering a cascade that leads to cytotoxic molecule 215 
release and cell elimination.  216 

The tumor is not just a mass of cancer cells but rather a complex ecosystem referred to as the tumor 217 
microenvironment (TME). This environment comprises cancer cells, cancer-associated fibroblasts, 218 
immune cells, endothelial cells, pericytes, the extracellular matrix (ECM), and various secreted 219 
molecules. The ECM provides structural support, while interactions between cancer cells and 220 
surrounding cells occur through direct contact or signaling molecules such as cytokines, chemokines, 221 
and extracellular vesicles82-87. These interactions can contribute to immune suppression, allowing 222 
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tumors to evade detection. Immune-suppressive cells within the TME, including myeloid-derived 223 
suppressor cells (MDSCs) and regulatory T cells (Tregs), are crucial to tumor progression by dampening 224 
anti-tumor immune responses. MDSCs suppress T cell and NK cell activation and proliferation through 225 
multiple pathways, including the generation of reactive oxygen species and the secretion of 226 
immunosuppressive cytokines like TGF-β and IL-1088,89. Likewise, Tregs can inhibit the activity of 227 
effector T cells and NK cells by producing these same cytokines90,91. Exosomes, small membrane-bound 228 
extracellular vesicles (30 - 150 nm) secreted by various cell types including cancer cells, are another 229 
important component of the TME92,93. These exosomes facilitate intercellular communication by 230 
transferring bioactive molecules, such as lipids, nucleic acids, metabolites, and proteins, that reflect the 231 
cell of origin. Exosomes released by tumor cells have potent immunosuppressive properties94, altering 232 
the immune landscape within the TME. These exosomes can carry immunosuppressive molecules, such 233 
as PD-L1 and TGF-β, which suppress the activity of effector T cells and NK cells while promoting the 234 
expansion of immunosuppressive populations such as Tregs, MDSCs, and regulatory B cells (Bregs). 235 
Additionally, tumor-derived exosomes interfere with the maturation of myeloid progenitor cells, 236 
promote the polarization of macrophages into the tumor-supportive M2 phenotype, and hinder 237 
neutrophil recruitment, collectively enabling tumors to escape immune detection and surveillance95-97. 238 
Together, these cellular and molecular interactions within the TME create a supportive environment for 239 
tumor growth and immune evasion. 240 

Despite their potent anti-cancer abilities, NK cells in the TME face various challenges that severely 241 
impair their function. First, the ECM can create physical barriers that prevent NK cell infiltration into 242 
tumor tissue, limiting their ability to reach and eliminate tumor cells, especially in poorly vascularized 243 
regions. Another major obstacle is the presence of immunosuppressive factors. TGF-β suppresses the 244 
expression of key NK cell activating receptors such as NKG2D and reduces cytokine production such 245 
as IFN-γ, which is vital for anti-tumor immunity98-100. Prostaglandin E2 (PGE2), an immunosuppressive 246 
molecule in the TME, downregulates activating receptors and promotes inhibitory pathways in NK 247 
cells101-103. Hypoxia, or low oxygen levels, alters the expression of activating receptors such as NKp44, 248 
NKp46, NKp30, and NKG2D, and reduces NK cell cytokine secretion, thus impairing their ability to 249 
recognize and kill tumor cells104,105. Tumor cells can also exploit NK cell inhibitory receptors to evade 250 
killing by upregulating ligands for these receptors. Similar to T cells, NK cells can express the 251 
checkpoint receptor PD-1. When PD-1 engages with its ligand PD-L1 on tumor cells, NK cells become 252 
exhausted, losing their cytotoxic capabilities. Table 2 provides an overview of key mechanisms by 253 
which tumors evade NK cell-mediated immunosurveillance. Addressing these challenges is a major 254 
goal of advancing NK cell immunotherapy, with the focus on restoring or enhancing NK cell function 255 
to more effectively target and eliminate tumors. 256 

 257 

NK Cell-Based Cancer Therapies  258 

NK cell-based cancer therapies leverage the killing function of NK cells to target and destroy tumor 259 
cells, presenting a promising approach in cancer immunotherapy. These strategies include CAR-NK 260 
cells, NK cell engagers, NK exosomes, and other innovative strategies (Figure 2). 261 

Cell Sources The source of NK cells is a critical factor in determining their clinical effectiveness and 262 
scalability in NK cell therapy (Figure 3). Primary NK cells, sourced from peripheral blood, umbilical 263 
cord blood, or hematopoietic stem cell progenitors, are pivotal in cancer immunotherapy due to their 264 
natural ability to recognize and eliminate tumor cells through activating receptors such as NKG2D and 265 
CD16, the latter of which facilitates ADCC. Autologous NK cells, derived from the patient’s own 266 
immune system, are activated using cytokines like IL-2, IL-12, IL-15, and type I IFNs to enhance their 267 
antitumor function. While offering personalized therapy, their effectiveness is often diminished in 268 
cancer patients due to the immunosuppressive TME. In contrast, allogeneic NK cells from healthy 269 
donors exhibit stronger cytotoxicity, particularly in patients undergoing hematopoietic stem cell 270 
transplantation, where donor NK cells can counteract TME-induced immunosuppression. Immortalized 271 
NK cell lines, such as NK-92106,107 , KHYG-1108,109, and NKL110,111 , offer a scalable and consistent 272 
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therapeutic source, with NK-92 being the only cell line in clinical trials. However, NK-92 cells lack 273 
CD16 expression, limiting their ADCC potential, and require irradiation to prevent tumorigenicity. 274 
Induced pluripotent stem cell (iPSC)-derived NK cells provide a scalable and renewable option, 275 
enabling off-the-shelf therapies with consistent quality and enhanced engineering potential112,113, though 276 
their production is time-intensive and costly, and their long-term safety remains under investigation. In 277 
terms of anti-tumor activity, NK-92 cells display robust efficacy, particularly when engineered with 278 
CARs; however, their lack of CD16 limits their ability to synergize with monoclonal antibodies. 279 
Primary NK cells exhibit strong cytotoxicity due to their mature phenotype and high ADCC potential. 280 
While iPSC-derived NK cells have lower baseline cytotoxicity compared to primary NK cells and NK 281 
cell lines, their ability to be engineered for enhanced functionality highlights their promise in advancing 282 
NK cell-based cancer immunotherapy. 283 

CAR-NK Cells CAR-NK cell technology harnesses the innate cytotoxicity of NK cells while 284 
integrating the tumor-targeting precision of engineered receptors. Like CAR-T cells, CAR-NK cells are 285 
engineered to express CARs that recognize specific antigens on cancer cells. Conventional CAR-NK 286 
cells consist of a CAR structure with an extracellular single-chain variable fragment (scFv), a 287 
transmembrane domain, and intracellular signaling domains. Next-generation CAR-NK cells 288 
incorporate innovative features, such as dual-targeting receptors for multiple antigens, armored CARs 289 
that secrete cytokines like IL-15 to enhance persistence, and modules to block immune checkpoints 290 
such as PD-L1, counteracting tumor-induced immune suppression114-116. Combining CAR-NK cells 291 
with monoclonal antibodies or checkpoint inhibitors has shown potential to improve therapeutic 292 
outcomes117,118. When comparing CAR-T and CAR-NK therapies, both demonstrate distinct strengths 293 
and challenges. CAR-T cells have shown remarkable efficacy in hematologic malignancies due to their 294 
antigen-specific cytotoxicity, long persistence, and memory T cell formation. However, they encounter 295 
significant limitations in solid tumors, including susceptibility to the TME and risks of cytokine release 296 
syndrome (CRS), neurotoxicity, and graft-versus-host disease (GVHD)119,120 in allogeneic settings. In 297 
contrast, CAR-NK cells combine innate and CAR-mediated cytotoxicity, enabling them to target tumors 298 
with heterogeneous antigen expression and function more effectively within the TME. They also exhibit 299 
a superior safety profile, with minimal risks of CRS and neurotoxicity, and can be produced as off-the-300 
shelf therapies using sources like cord blood and iPSCs. Despite these advantages, CAR-NK cells face 301 
challenges such as limited persistence in vivo, difficulties infiltrating solid tumors, immunosuppressive 302 
TME, and antigen downregulation, which can reduce therapeutic efficacy. Additionally, systemic 303 
administration for central nervous system cancers, such as HGGs, must overcome physical barriers like 304 
the blood-brain barrier (BBB), posing a significant hurdle for CAR-NK therapies. 305 

NK Cell Engagers (NKCEs) NKCEs are engineered, antibody-based molecules designed to target 306 
cancer or infected cells. These molecules come in two main forms: bispecific killer cell engagers 307 
(biKEs) and trispecific killer cell engagers (triKEs)121,122. NKCEs function by simultaneously binding 308 
to NK cells and tumor-specific antigens on cancer cells, bringing them into close proximity and 309 
activating NK cells to more effectively kill the target cells. Ideally, the tumor antigen should be a cell 310 
surface protein overexpressed in cancer cells, maximizing the ability of NKCE to recognize and target 311 
the cancer cell. Equally important is the selection of NK cell receptors. One of the most common NK 312 
cell receptors used in NKCEs is CD16, known for its ability to fully activate NK cells without needing 313 
coactivation from other receptors123. Other receptors, such as NKG2D124,125, NKp30126,127, and 314 
NKp46128,129, can also be used depending on the specific advantages they offer. In triKEs, the NK 315 
receptor and tumor cell antigen are linked via an IL-15 component, which boosts NK cell growth, 316 
activation, and survival (Figure S1). Preclinical studies have shown promising results for triKEs in 317 
treating cancers such as ovarian cancer130, high-risk myelodysplastic syndromes131, and advanced 318 
systemic mastocytosis132. While NKCEs offer many advantages, such as enhanced specificity and 319 
immune activation, they also present challenges. These include a short half-life in the body and potential 320 
size limitations that may hinder their ability to penetrate dense tumors.  321 

NK Cell Exosomes The formation of NK cell-derived exosomes begins with the invagination of the 322 
plasma membrane of the NK cells, creating an early endosome that encapsulates various 323 
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macromolecules during this process133. As the early endosome matures into a late endosome, it 324 
undergoes further sorting and packaging of its macromolecular contents134. Subsequently, the late 325 
endosome fuses with the plasma membrane of the NK cells, releasing exosomes into the extracellular 326 
matrix133. Once secreted, NK cell exosomes interact with target cells, delivering their molecular cargo 327 
to exert their functions. NK cell exosomes retain characteristics of their parent NK cells, including the 328 
expression of surface markers such as CD16, CD69, NKp44, and NKG2D135-137. They carry cytotoxic 329 
molecules like TNF-α, granzyme A/B, and perforin, and they display transmembrane proteins such as 330 
FasL and TRAIL, which can induce both caspase-dependent and caspase-independent apoptosis in 331 
tumor cells. A major advantage of NK cell exosomes in cancer therapy is their small size, which allows 332 
them to navigate tumor vasculature effectively, along with their resilience in acidic environments. 333 
Recent studies have highlighted their effectiveness against various cancers, demonstrating significant 334 
cytotoxic activity against melanoma138 and breast cancer139. However, despite their promise, preclinical 335 
and clinical validation of NK cell exosomes in brain tumors remains in its early stages, necessitating 336 
further studies to evaluate their long-term safety and efficacy. 337 

 338 

NK Cell-Based Therapies for Targeting GSCs in HGG 339 

GSCs play a critical role in the initiation, progression, and therapeutic resistance of HGGs, making 340 
them a key target for innovative treatment approaches. Recent studies have shown that NK cells can 341 
effectively target and destroy GSC tumorspheres in vitro, offering hope for improved therapeutic 342 
outcomes 140-142. However, the success of NK cells in eliminating GSCs is not always assured and often 343 
depends on their activation within the TME141,143. HGGs create a "cold" TME by promoting hypoxia, 344 
upregulating immunosuppressive molecules such as TGF-β and IL-10, and recruiting regulatory cells, 345 
including MDSCs and tumor-associated macrophages. These factors impair the ability of NK cells to 346 
recognize and destroy GSCs. Additionally, GSCs downregulate activating ligands, further reducing NK 347 
cell efficacy (Figure 4)144. The heterogeneity of GSCs compounds these challenges, as these cells 348 
express varying surface markers at different stages of differentiation, making it difficult for NK cells to 349 
consistently recognize and target them.  350 

To enhance NK cell efficacy against HGGs, researchers have been investigating multiple strategies. 351 
The NKG2D ligand family consists of several stress-induced proteins, including MICA, MICB, and the 352 
ULBP (UL16-binding proteins) subfamily, which are expressed on the surface of cancer cells. These 353 
ligands bind to the NKG2D receptor on NK cells, triggering NK cell activation and cytotoxicity, thereby 354 
facilitating the elimination of cancer cells. However, GSCs in GBM have been shown to downregulate 355 
NKG2D ligands, which confers resistance to NK cell-mediated killing144. Thus, targeting NKG2D 356 
ligands represents a promising strategy to enhance NK cell-based therapies for GSCs in HGG. 357 
Epigenetic modifications play a vital role in regulating gene expression, including the expression of 358 
NKG2D ligands145-148. Previous studies have demonstrated that targeting EZH2-92aa, a protein encoded 359 
by circular EZH2, can promote NK cell-mediated eradication of GSCs both in vitro and in vivo by 360 
activating NKG2D ligands144. Another study highlighted that the epigenetic regulator, histone 361 
deacetylase HDAC8, regulates the expression of NKG2D ligands in glioma cells, and inhibiting 362 
HDAC8 increases NKG2D ligand expression, thereby enhancing NK cell-mediated cytotoxicity149. 363 
MicroRNAs (miRNAs), small non-coding RNA molecules, represent a crucial epigenetic regulatory 364 
mechanism by targeting mRNA and modulating gene expression. They play a pivotal role in regulating 365 
NK cell functions, such as cytotoxicity, proliferation, and cytokine production. For instance, 366 
overexpression of miR-362-5p in human primary NK cells enhances the expression of cytotoxic 367 
molecules like IFN-γ, perforin, granzyme-B, and CD107a by targeting the cylindromatosis (CYLD) 368 
gene, a negative regulator of NF-κB signaling150. Similarly, miR-155 enhances NK cell activation in 369 
response to IL-2, IL-15, and IL-21 stimulation151. Nanoparticles offer a promising platform for miRNA 370 
delivery, with their ability to precisely target tumor sites, cross the BBB, and penetrate tumor 371 
vasculature, making them particularly suitable for HGG therapy. Incorporating miRNA-loaded 372 
nanoparticles into NK cell-based therapies is an emerging field with immense potential. For example, 373 
NK cell-derived exosomes carrying miR-186 have demonstrated cytotoxic effects against MYCN-374 
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amplified neuroblastoma by preventing TGFβ1-mediated NK cell inhibition152. These findings 375 
underscore the potential of miR-186-loaded nanoparticles as a therapeutic strategy to enhance NK cell-376 
mediated immunotherapy. 377 

Furthermore, the development of CAR-NK cells, genetically engineered to recognize specific antigens 378 
expressed on GSCs such as EGFRvIII and GD2, represents a cutting-edge strategy with significant 379 
therapeutic potential153-155. EGFRvIII, a tumor-specific antigen resulting from an in-frame deletion of 380 
certain exons in the EGFR gene, promotes tumor growth through constitutive activation while 381 
remaining absent in normal tissues, making it an ideal target. Studies have shown that dual-specific 382 
CAR-NK cells targeting both EGFR and EGFRvIII using NK-92 cells effectively inhibited tumor 383 
growth and prolonged survival in mice with intracranial GBM xenografts153. Additionally, EGFRvIII-384 
specific CAR-NK cells engineered to overexpress the chemokine receptor CXCR4 demonstrated 385 
enhanced chemotaxis to CXCL12/SDF-1α-secreting GBM cells, achieving complete tumor remission 386 
in some mice and significantly improved survival compared to controls156. Ganglioside GD2, a 387 
glycolipid highly expressed on various tumors, including GBM155 and DIPG157, but with limited 388 
expression in normal tissues, is another promising target. GSCs in GBM are known to overexpress 389 
GD2158, which plays a role in tumor progression by promoting cell proliferation, migration, and immune 390 
evasion. GD2-specific CAR-NK cells have demonstrated the ability to effectively kill DIPG cells with 391 
high GD2 expression in both in vitro and in vivo patient-derived cell models157.  392 

Oncolytic viruses can reshape the TME to enhance NK cell activity. By directly targeting tumor cells 393 
and triggering an anti-tumor immune response, viruses engineered to express the IL15/IL15Rα complex 394 
have been shown to significantly boost the efficacy of EGFR-CAR NK cells against GBM159. 395 
Additionally, studies have reported that autophagy inhibitors19 and STING agonists160 possess the 396 
ability to modify the TME, further enhancing NK cell-mediated anti-tumor immune responses in GBM. 397 
Targeting galectin-1, a β-galactoside-binding lectin overexpressed in GBM cells161, induces the release 398 
of exosomes containing miRNA-1983 into the TME. These exosomes bind to toll-like receptor 7 (TLR7) 399 
on plasmacytoid dendritic cells (pDCs) and conventional dendritic cells (cDCs), activating TLR7 and 400 
triggering the release of IFNβ, which enhances NK cell-mediated cytotoxicity against GBM cells162. 401 
Another promising approach is targeting the αv integrin/TGF-β axis, which has shown potential to 402 
improve the infiltration and function of adoptively transferred NK cells in attacking GSCs141. Cytokine-403 
based therapies, including IL-2 and IL-15, have been used to boost NK cell proliferation and 404 
activation163-166. Immunocytokines, which are monoclonal antibodies conjugated with cytokines167,168, 405 
represent another innovative approach to boosting NK cell activity. In preclinical GBM models, therapy 406 
involving the L19 antibody linked to cytokine IL-2 has successfully increased NK infiltration, 407 
promoting tumor regression and improving survival rates when used alongside radiotherapy169. 408 
Furthermore, targeting the recruitment of immunosuppressive MDSCs and tumor-associated 409 
macrophages may improve NK cell infiltration and functionality in HGGs. Other strategies to improve 410 
NK cell efficacy against HGGs are outlined in Table 3.  411 

Table 4 highlights a selection of recent clinical trials employing NK cell therapies for GBM patients. A 412 
phase I/IIa clinical trial (KCT0003815) evaluated the safety and efficacy of adoptive, ex vivo-expanded, 413 
and activated NK cells and T lymphocytes derived from peripheral blood mononuclear cells of patients 414 
with recurrent GBM. The results showed a median overall survival (OS) of 22.5 months and a median 415 
progression-free survival of 10 months. Notably, five patients demonstrated durable responses, 416 
remaining alive for over two years, with enhanced immune-reaction transcriptomic signatures and no 417 
signs of clinical decline at their last follow-up after completing therapy170. Additionally, a phase I trial 418 
(NCT01588769) investigated the tolerability and efficacy of autologous lymphoid effector cells specific 419 
against tumor cells (ALECSAT) in patients with GBM. Activated CD4+ T helper cells, treated with a 420 
DNA-demethylating agent, were induced to express a broad spectrum of endogenous cancer/testis 421 
antigens, enabling them to serve as antigen-presenting cells and facilitate the generation of autologous 422 
cytotoxic T lymphocytes and NK cells. Tumor regression was observed in three patients, with responses 423 
sustained for up to 27 months, and no treatment-related adverse events reported171. Furthermore, 424 
ongoing clinical trials are actively exploring NK cell-based therapies for HGGs. For example, 425 
NCT03383978 is evaluating intracranial injection of NK-92/5.28.z CAR NK cells combined with 426 
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intravenous ezabenlimab in patients with recurrent HER2-positive GBM. The Phase II trial 427 
NCT06687681 is investigating intrathecal injections of active allogeneic NK cells in newly diagnosed 428 
patients with grade 3 or 4 brain tumors, including GBM and DIPG. Patients will receive active NK cell 429 
injections via lumbar puncture. Additionally, the Phase I trial NCT04991870 aims to determine the 430 
optimal dose, benefits, and side effects of engineered NK cells with deleted TGF-betaR2 and NR3C1 431 
(CB-NK-TGF-betaR2-/NR3C1-) in treating recurrent GBM. This study focuses on evaluating the safety 432 
and tolerability of escalating doses of off-the-shelf CB-NK-TGF-betaR2-/NR3C1- in these patients. 433 
These diverse strategies reflect a comprehensive effort to optimize NK cell-based therapies for HGGs, 434 
offering hope for more potent and durable treatment options against these aggressive and deadly brain 435 
cancers. 436 

 437 

Discussion and Future Perspectives 438 

HGGs are some of the most lethal cancers, with GBM in adults and DIPG in children being particularly 439 
aggressive forms. Despite affecting different patient populations and regions of the brain, these tumors 440 
share key characteristics: resistance to standard treatments, high invasiveness, poor prognosis, and the 441 
presence of GSCs, which drive tumor progression and relapse.  442 

Despite advancements in NK cell-based therapies, significant challenges remain in treating HGGs. 443 
Autologous and allogeneic primary NK cells have limited lifespans and struggle to persist after infusion, 444 
with their infiltration into solid tumors hindered by physical barriers such as the BBB and the ECM in 445 
TME. As tumors progress, their targeting efficacy diminishes. NK cell lines offer scalable, off-the-shelf 446 
options for therapy but are difficult to manipulate or engineer for enhanced effectiveness. While CAR-447 
NK cells and NKCEs provide more precise targeting, they still face issues with physical barriers, poor 448 
persistence, and short half-lives within the TME of HGGs. NK cell-derived exosomes, considered a 449 
next-generation therapy, show promise in bypassing these barriers due to their smaller size, which 450 
allows for easier crossing of physical obstacles. However, the immunosuppressive TME continues to 451 
undermine their efficacy. Given these limitations, it is crucial to explore new approaches to enhance 452 
NK cell-based therapies for HGGs. We propose three key directions for improving and clinically 453 
advancing these therapies. 454 

1. Promoting NK cell trafficking and infiltration into HGGs. The BBB is a significant obstacle for NK 455 
cells as well as the NKCEs administered systemically, limiting their access to the tumors. Temporarily 456 
disrupting the BBB can improve NK cells and NKCEs delivery, with methods like focused ultrasound 457 
showing promise by creating transient openings in the BBB172-174. Another approach involves 458 
modulating chemokines to enhance NK cell trafficking. For example, overexpressing chemokines like 459 
CXCL10, which binds CXCR3 on NK cells175,176, can improve NK cell homing to the HGGs. Radiation 460 
therapy may also increase chemokine expression in TME and disrupt physical barriers, making tumors 461 
more accessible to NK cells177-179. Tumor Treating Fields (TTFields), which received FDA approval in 462 
2011 for GBM treatment, can activate IFN signaling within the tumor180,181. This activation may enhance 463 
NK cell homing to HGGs and improve their capacity to target and eliminate GSCs. Furthermore, 464 
switching from systemic to local delivery of NK cells can significantly improve infiltration. 465 
Administering NK cells intraventricularly into the ventricles of brain or intratumorally directly into the 466 
tumor bypasses the BBB, resulting in higher concentrations of NK cells at the tumor site and enhanced 467 
therapeutic outcomes. Additionally, using BBB-penetrating NK cell exosomes may allow better access 468 
to the tumor. NK cell exosomes, which retain cytotoxic properties by carrying perforin and granzymes, 469 
can target GSCs in HGGs without the need for direct NK cell infiltration. For instance, considering the 470 
therapeutic potential of miRNA-1983 in GBM treatment161,162, developing NK cell-derived exosomes 471 
loaded with miRNA-1983 could be a promising approach for targeting GSCs within the HGG TME. 472 

2. Enhancing NK cell persistence and efficacy. Precision-engineering tools such as CRISPR/Cas9 can 473 
enhance NK cell activity in the immunosuppressive TME by deleting genes associated with NK cell 474 
exhaustion or inhibitory pathways. Combining NK cells with IgG antibodies amplifies the ADCC effect, 475 
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strengthening NK cell killing efficacy182-186. Modulating the TME itself, by targeting 476 
immunosuppressive signals like TGF-β or reprogramming tumor-associated macrophages and MDSCs, 477 
can also enhance NK cell survival and function. Another promising approach involves combining NK 478 
cell-based therapies with other treatments, such as radiotherapy, chemotherapy, TTFields, oncolytic 479 
viruses, immune checkpoint antibodies (e.g., PD-1/PD-L1 or CTLA-4 antibodies), or cytokines (e.g., 480 
IL-12 or IL-15). For example, radiation and chemotherapeutics like TMZ, the standard of care for GBM, 481 
could induce the upregulation of stress ligands, such as MICA/B and ULBPs, on GSCs, which are 482 
recognized by the activating receptor NKG2D on NK cells187. Furthermore, the immune-modulatory 483 
effects of radiation and chemotherapy may improve NK cell infiltration and persistence within the TME, 484 
amplifying their direct cytotoxic effects. Certain chemotherapeutics also reduce the immunosuppressive 485 
nature of the TME by depleting immunosuppressive cells, including MDSCs and Tregs, thereby further 486 
enhancing NK cell functionality. Oncolytic viruses selectively infect and replicate within tumor cells, 487 
releasing chemokines like CXCL10 that recruit NK cells to the TME188,189. They also enhance the 488 
expression of stress ligands on tumor cells, facilitating improved NK cell recognition, and induce 489 
immunogenic cell death, which activates dendritic cells and promotes NK cell activation within the 490 
TME190. Immune checkpoints, including PD-1/PD-L1, TIGIT/CD96/CD155, and LAG-3/TIM-3, play 491 
a significant role in suppressing NK cell activity in the HGG TME191,192. Targeting these checkpoints 492 
through immune checkpoint blockade, either individually or in combination, offers a promising strategy 493 
to restore NK cell functionality and enhance their cytotoxicity against GSCs. 494 

3. Enhancing clinical translation of NK cell-based therapies. The transition from preclinical success to 495 
scalable, reliable therapies for HGG patients faces many challenges, including regulatory, 496 
manufacturing, and logistical hurdles193. Establishing robust manufacturing platforms for NK cell 497 
therapies and ensuring they are scalable will be crucial for their clinical adoption. By overcoming these 498 
challenges, we can facilitate the broader implementation of effective NK cell-based treatments for 499 
HGGs in clinical settings. 500 
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List of Figure Captions 1219 

 1220 

Figure 1. NK cell inhibitory and activating receptors. The inhibitory receptors on NK cells include 1221 
CD94/NKG2A, TIGIT, and PD-1, while the activating receptors comprise NKG2D, NKp44, and 1222 
NKp46, among others. TNF-related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL) on NK 1223 
cells is also illustrated. 1224 

 1225 

Figure 2. NK cell-based cancer therapies. This diagram showcases various NK cell-based 1226 
immunotherapies, including NK cell engagers such as bispecific killer engager (BiKE) and trispecific 1227 
killer engager (TriKE), which are designed to enhance NK cell targeting and activation. NK exosomes, 1228 
depicted as extracellular vesicles released by NK cells, contain cytotoxic molecules. Chimeric antigen 1229 
receptor (CAR)-NK cells are illustrated across different generations, with next-generation versions 1230 
exhibiting enhanced features such as cytokine production and dual-targeting capabilities. Additionally, 1231 
antibody-dependent cellular cytotoxicity (ADCC) highlights the role of NK cells in targeting antibody-1232 
coated cancer cells. 1233 

 1234 

Figure 3. NK Cell Sources for Cancer Immunotherapy. This diagram presents the four primary 1235 
sources of NK cells for immunotherapy. In the upper left, allogeneic NK cells are depicted, derived 1236 
from peripheral blood (PB) or cord blood (CB), expanded in vitro, and then infused into the patient. 1237 
The upper right shows autologous PB-NK cells, where the patient’s own NK cells are collected from 1238 
PB, expanded, and reinfused. The lower left illustrates NK cell lines, consisting of immortalized NK 1239 
cells grown in culture for therapeutic application. The lower right highlights induced pluripotent stem 1240 
cell (iPSCs)-derived NK cells for clinical use. 1241 

 1242 

Figure 4. GSC-NK interactions in the TME of HGGs. Two key signaling pathways are highlighted, 1243 
while others are either not depicted here or remain unidentified. In signaling 1, the downregulation of 1244 
NKG2D ligands (NKG2D-L) on GSCs reduces NK cell recognition, resulting in diminished sensitivity 1245 
to NK cell-mediated killing of GSCs. In signaling 2, GSCs enhance the secretion of TGF-β within the 1246 
TME, which binds to TGF-β receptors on NK cells, inhibiting their cytotoxic activity against GSCs. 1247 
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Table 1. NK cell receptors and their corresponding tumor cell ligands 1261 

NK cell receptors Tumor cell ligands Function 

NKG2D MICA/MICB, ULBP1-6 Activating 

NKp30 B7-H6, PCNA Activating 

NKp46 Heparan sulfate Activating 

CD16 (FcγRIII) Fc region of IgG Activating, facilitates ADCC 

DNAM-1 PVR, Nectin-2 Activating 

2B4 (CD244) CD48 Activating or inhibitory, depending on 

signaling partners 

CD94/NKG2C HLA-E Activating 

CD2 LFA-3 Activating 

KIRs HLA-C Inhibitory (mostly) 

CD94/NKG2A HLA-E Inhibitory 

LILRs HLA-G Inhibitory 

TIGIT PVR, Nectin-2 Inhibitory 

SIGLEC-7 Sialylated ligands Inhibitory 

PD-1 PD-L1, PD-L2 Inhibitory 

ILT2 (lir-1) HLA class I Inhibitory 

TRAIL Death receptors 

DR4/DR5 

Induces apoptosis in tumor cells 

FasL Fas Induces apoptosis in tumor cells  
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Table 2. Mechanisms of tumor evasion from NK cell immunosurveillance 1275 

Mechanisms Description Examples/Key molecules 

Interactions of 

inhibitory ligands 

and receptors194,195  

Tumor cells overexpress ligands that 

bind NK cell inhibitory receptors, 

blocking NK activation 

 

MHC class I molecules (e.g., HLA-E) 

bind NK cell inhibitory receptors like 

KIR and NKG2A  

HLA-E/NKG2A interaction is a key 

pathway for tumor evasion 

Secretion of 

immunosuppressive 

cytokines98-100 

Tumors secrete cytokines that 

suppress NK cell activation, 

proliferation, and function  

These cytokines create an 

immunosuppressive 

microenvironment 

TGF-β reduces NK cell activating 

receptors (e.g., NKG2D)  

IL-10 inhibits NK cell cytokine 

production 

PGE2 diminishes NK cell 

cytotoxicity 

Hypoxia196,197 Hypoxia in the TME impairs NK cell 

function 

Hypoxia downregulates NK cell 

activating receptors (e.g., NKp30, 

NKp44, NKp46)  

Downregulation of 

NK cell activating 

ligands9,144 

Tumor cells downregulate or shed 

ligands that bind to NK cell activating 

receptors 

Soluble ligands can block NK cell 

function 

NKG2D ligands (MICA, MICB, 

ULBP) are downregulated or shed in 

soluble forms (e.g., sMICA)  

This "decoy" mechanism neutralizes 

NK cell responses  

Expression of 

checkpoint 

proteins191,198 

Tumors upregulate immune 

checkpoint ligands that bind 

inhibitory receptors on NK cells  

This leads to immune exhaustion and 

reduced NK cell activity 

Tumors express PD-L1, which binds 

to PD-1 on NK cells, reducing NK 

activity  

The PD-1/PD-L1 pathway is a key 

immune evasion mechanism 

Exosomal 

suppression199 

Tumor cells release exosomes 

containing immunosuppressive 

molecules that inhibit NK cell activity 

Tumor-derived exosomes with TGF-

β and NKG2D ligands suppress NK 

cells by reducing their activation and 

recognition of cancer cells 

Physical barriers in 

the TME200,201 

Tumors create physical barriers (e.g., 

fibrous tissue, ECM) that prevent NK 

cell infiltration 

Fibrous matrix and BBB shield 

tumors, especially in brain cancers  

Loss of NK cell 

activating 

cytokines202-204 

Tumors decrease cytokine levels 

necessary for NK cell activation and 

survival 

IL-15 and IL-12 levels are often 

reduced in the TME, impairing NK 

cell proliferation and cytotoxicity 
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Table 3. Preclinical strategies for enhancing NK cell-based therapies for HGGs 1282 

Strategies Description Key features Application  

CAR-NK cells NK cells 

engineered with 

CAR 

Target specific 

tumor antigens (e.g., 

EGFRvIII, GD2) 

 

Less toxicity than 

CAR-T cells 

CAR constructs with 

intracellular 

signaling domains 

CAR-NK cells have shown 

promise in targeting glioma-

specific antigens like EGFRvIII 

and GD2, both of which are 

overexpressed in GBM and DIPG 

Their reduced risk of cytokine 

release syndrome (CRS) makes 

them safer than CAR-T cells in 

glioma treatments, especially in 

pediatric patients with DIPG 

where safety is critical 

NKCEs BiKEs, or TriKEs 

that enhance NK 

cell activation 

BiKEs: Two arms 

(one for tumor 

antigen, one for NK 

cell receptor) 

TriKEs: Three arms 

for enhanced NK 

activation 

BiKEs and TriKEs can enhance 

NK cell-mediated cytotoxicity 

against GSCs, which are highly 

resistant to conventional therapies 

in GBM and DIPG 

 

TriKEs may engage NK cells with 

multiple tumor antigens or 

immune receptors, providing a 

multifaceted approach to 

overcoming HGG immune evasion 

Can be combined with 

radiotherapy to enhance tumor 

destruction 

ADCC 

enhancement 

Antibody-

dependent 

cellular 

cytotoxicity via 

NK cell 

engagement 

Maximize the 

effectiveness of NK 

cells in antibody-

dependent tumor cell 

destruction 

ADCC-enhancing monoclonal 

antibodies can increase NK cell-

mediated killing of glioma cells 

that overexpress antigens such as 

CD133, a marker associated with 

GSCs 

ADCC therapies can be 

particularly useful when combined 

with immune checkpoint inhibitors 

to further increase NK cell 

activation in HGGs 

Immunocytokines Fusion proteins 

of cytokines and 

tumor-targeting 

antibodies 

Combines cytokines 

(e.g., IL-2, IL-12) 

with antibodies  

 

Increased NK cell 

infiltration into the 

TME 

Immunocytokines like IL-2 and 

IL-12 linked to tumor-targeting 

antibodies could enhance NK cell 

infiltration in the immunologically 

“cold” TME of HGGs 

Delivering immunocytokines 

directly to the tumor site may 

improve NK cell survival, 

proliferation, and cytotoxic 

activity 
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Could synergize with NK cell 

engagers and CAR-NK cells for 

better outcomes 

CRISPR/Cas9-

edited NK cells 

Genetically 

edited NK cells 

for enhanced 

functionality 

CRISPR/Cas9 can 

be used  

Enhanced NK cell 

resistance to tumor 

suppression 

Gene knockouts of inhibitory 

checkpoint molecules (e.g., PD-1) 

in NK cells makes them resistant to 

the immunosuppressive TME in 

HGGs 

This approach has the potential to 

restore NK cell function 

compromised by the TME through 

inhibition of the TGF-β pathway 

NK cell-derived 

exosomes 

Exosomes 

released by NK 

cells engineered 

for therapeutic 

purposes 

Small vesicles 

loaded with proteins, 

genetic material  

 

Can be engineered to 

deliver therapeutic 

agents directly to 

tumor cells 

NK cell-derived exosomes can 

carry cytotoxic proteins or RNA 

molecules targeting GSCs 

These exosomes can cross the 

BBB, making them an ideal 

candidate for targeting GSCs in 

HGGs 

Engineered NK exosomes can be 

loaded with molecules that inhibit 

HGG growth, such as pro-

apoptotic factors or tumor-

suppressive RNA 
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Table 4. Clinical trials of NK cell-based therapies for GBM 1300 

NCT #  Trials Phase Enrolled Outcome Ref 

KCT0003815 A phase I/IIa clinical 

trial to investigate the 

safety and efficacy of 

adoptive, ex-vivo-

expanded, and 

activated NK cells and 

T lymphocytes from 

peripheral blood 

mononuclear cells of 

patients with recurrent 

GBM 

I/IIa  14  The median overall survival 

(OS) was 22.5 months, with a 

median progression-free 

survival of 10 months. 5 

patients remained alive for 

over 2 years, demonstrating a 

durable response 

accompanied by enhanced 

immune-reaction 

transcriptomic signatures and 

no signs of clinical decline at 

their last follow-up after 

completing therapy 

170 

NCT01588769 A phase I study to 

investigate tolerability 

and efficacy of 

autologous lymphoid 

effector cells specific 

against tumour-cells 

(ALECSAT) 

administered to 

patients with GBM 

I 25 Activated CD4+ T helper 

cells, following treatment 

with a DNA-demethylating 

agent, express a wide range 

of endogenous cancer/testis 

antigens, enabling them to 

function as antigen-

presenting cells to generate 

autologous cytotoxic T 

lymphocytes and NK cells. 

These cells successfully 

targeted the tumor, leading to 

tumor regression in 3 

patients, sustained for 14, 22, 

and 27 months, respectively  

171 

NCT03383978 Intracranial injection 

of NK-92/5.28.z cells 

in combination with 

intravenous 

ezabenlimab in 

patients with recurrent 

HER2-positive GBM 

I 30  Not available yet  

NCT04991870 Engineered NK cells 

containing deleted 

TGF-betaR2 and 

NR3C1 for the 

treatment of recurrent 

GBM 

I 25 Not available yet  

NCT06147505 NK cells (XS005) 

injection combined 

with stupp regimen for 

adjuvant 

chemotherapy in 

subjects with primary 

GBM 

I/II 30 Not available yet  
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KIRs
CD94/NKG2A
LILRs
TIGIT 
Siglec-7
PD-1 
ILT2 (LIR-1)

NKG2D 
NKp30 
NKp44 
NKp46 
CD16 (FcγRIII)
DNAM-1 
2B4 (CD244)
CD94/NKG2C
CD2

Inhibitory receptors

Activating receptors

FasL

  

Granzyme 
Perforin

NK cell
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NK cell

TriKE

ADCC

Receptor-based CAR 
or nanobodies 

Adapter CAR 

BiKE

NK cell 
exosomes

NK cell 
engagers

CAR-NK 

1st gen CAR

2nd gen CAR

3rd gen CAR
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Allogenic NK cells Autologous PB-NK cells

iPS-derived NK cells NK cell lines

PB-NK cells

CB-NK cells

Patient
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Signaling 2

Signaling 1

NKG2D-L 
expression

Sensitivity to 
NK killing

TGF-β 
secretion

TGF-β 
receptor

NKG2D 
receptor

NK killing 
activity

NK

NKGSC

GSC
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Shen and colleagues review the role of glioma stem cells in high-grade gliomas across adults and children, 

and highlight advancements and future strategies to enhance natural killer cell-based therapies in treating 

high-grade gliomas. 
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