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Abstract 

Background: Longitudinal assessment of tumor burden using imaging helps to determine whether there has been a 

response to treatment both in trial and real-world settings. From a patient and clinical trial perspective alike, the time 

to develop disease progression, or progression-free survival, is an important endpoint. However, manual longitudinal 

response assessment is time-consuming and subject to interobserver variability. Automated response assessment 

techniques based on machine learning (ML) promise to enhance accuracy and reduce reliance on manual 

measurement. This paper evaluates the quality and performance accuracy of recently published studies. 

Methods: Following PRISMA guidelines and the CLAIM checklist, we searched PUBMED, EMBASE, and Web of 

Science for articles (January 2010-November 2024). Our PROSPERO-registered study (CRD42024496126) focused 

on adult brain tumor automated treatment response assessment studies using ML methodologies. We determined the 

extent of development and validation of the tools and employed QUADAS-2 for study appraisal.  

Results: Twenty (including seventeen retrospective and three prospective) studies were included. Data extracted 

included information on the dataset, automated response assessment including pertinent steps within the pipeline 

(index tests), and reference standards. Only limited conclusions are appropriate given the high bias risk and 

applicability concerns (particularly regarding reference standards and patient selection), and the low-level evidence. 

There was insufficient homogenous data for meta-analysis. 

Conclusion: The study highlights the potential of ML to improve brain tumor longitudinal treatment response 

assessment. Interpretation is limited due to study bias and limited evidence of generalizability. Prospective studies 

with external datasets validating the latest neuro-oncology criteria are now required. 
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Key Points: 

1. The systematic review emphasizes the role of machine learning in enhancing precision and efficiency in neuro-

oncology longitudinal assessments. 

2. The review highlights the necessity for further research to address biases and enhance clinical applicability. 

 

Importance of the Study 

We present the first systematic review that evaluates machine learning (ML) applications for the longitudinal 

treatment response assessment of brain tumors. Such technologies have the potential to improve neuro-oncological 

practice, offering a more precise, consistent, and efficient approach to treatment monitoring in both the clinic and 

during trials. 

 

We highlight the need for addressing bias risks in the development of automated ML methods. Despite the potential 

of ML to improve segmentation accuracy and efficiency, systematic errors appear to be common when the 

enhancing tumor region is measured. From this published work, automated tools do not appear clinic-ready, and 

further research, especially incorporating external test datasets and prospective datasets, is now needed for more 

robust validation. Successful demonstration of tool use in the clinic or in clinical trials is also now required to 

complete clinical validation. 
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1 Introduction 

Brain tumors present significant clinical challenges. For example, due to their infiltrative nature, diffuse gliomas 

typically have a very poor prognosis with the most common type, glioblastoma, having a median overall survival of 

only 14.6 months despite standard of care treatment (which typically consists of maximal safe tumor resection, 

followed by radiotherapy with concomitant and adjuvant temozolomide chemotherapy)1. The two-year survival rate 

is around 30%. Similarly, the presence of brain metastases, which occur in approximately 10% to 20% of adult 

cancer patients2, also represents a challenging clinical scenario due to the blood brain barrier influencing systemic 

therapeutic delivery. Metastatic invasion therefore complicates treatment decisions and is often associated with a 

median survival of just a few months. For example, patients with multiple brain metastases treated with whole-brain 

radiotherapy alone have a median survival of about 3-6 months3. To help navigate brain tumor patient management 

after the initiation of treatment, response assessment using longitudinal imaging has become the clinical standard of 

care. Regularly scheduled imaging facilitates tracking tumor biology and assessing treatment efficacy, which are 

important factors influencing decision-making during multidisciplinary team meetings (MDTM or Tumor Boards). 

The rationale is that disease progression may be identified before clinical symptoms emerge and that may lead to an 

early intervention - which may plausibly improve therapeutic outcomes and prevent irreversible complications4,5.  

 

Longitudinal imaging forms the basis of reference standards for response assessment in clinical trials. In such a 

research setting, RANO (Response Assessment in Neuro-Oncology) criteria6-9, have become essential by providing 

a standardized approach for assessing the effectiveness of treatments for brain tumors (Box 1). It is important to note 

that the US Food and Drug Administration (FDA) has endorsed treatment outcomes based on RANO criteria10, 

which ensures that they meet the rigorous standards necessary for regulatory approval in clinical trials. The RANO 

criteria not only consider changes in tumor size and morphology but also include the patient's clinical presentation 

and neurological functional status. Standardized clinico-radiological response assessment criteria not only allow 

comparison of outcomes during trials, but also during routine clinical assessment when applied in an expedient and 

simplified form to help clinicians to quickly make reliable treatment decisions given the complexities of interpreting 

MRI data11. 
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Box 1: Key terminology relevant for assessing autonomous treatment response assessment studies 

 

Reference Standard: The “reference standard” refers to the best available method to determine the accuracy of 

diagnostic assessments, establishing a benchmark for evaluating new methods12. Here, radiologists’ (1) manual 

image segmentation and (2) manual tumor assessment — using expert measurement of the Response Assessment 

in Neuro-Oncology (RANO) criteria — serve as the reference standards.  

 

Response Assessment in Neuro-Oncology (RANO) criteria: The RANO criteria serve as a standardized set of 

guidelines for evaluating the effectiveness of brain tumor treatments in clinical trials. These criteria were developed 

to address limitations in previous assessment methods such as the MacDonald criteria13. RANO assessment focuses 

on changes in tumor size (typically using the product of bidimensional perpendicular diameters), measured by T1-

weighted post contrast and T2/FLAIR MRI sequences. RANO assessment also incorporates clinical factors (e.g., 

corticosteroid use and neurological symptoms) alongside imaging. Beyond clinical trials, assessments in routine 

clinical practice may also use RANO or may largely be based on RANO criteria11. First designed for high-grade 

glioma6, updates and extensions of the RANO criteria have been proposed including for specific tumor types (e.g., 

low-grade gliomas, metastases, meningiomas) and advanced therapies (e.g., immunotherapies). Tumor response 

can be categorized as progression, stable disease, partial response, or complete response, and the criteria are 

defined.  

  

Index test: The “index test” refers to the new diagnostic test or assessment method under investigation12, which in 

this review is the automated ML-based assessment, encompassing both segmentation and tumor response 

evaluation. 

Manual longitudinal assessments based on structural MRI protocols can be problematic due to several factors 

. High-grade gliomas, for example, exhibit a variety of shapes, and their boundaries can be difficult to precisely 

define. Moreover, the solid tumor often manifests as a cavity rim, making it challenging to capture the full extent 

accurately. Indeed, in some cases, large cyst-like high-grade gliomas may not meet the "measurable" criteria unless 

a solid peripheral nodular component of sufficient size ( 10 mm) is present. These complexities highlight the 

limitations of manual assessments, as they rely on subjective interpretation and can result in inaccuracies in tumor 
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measurement and monitoring, as well as the need for more standardized and objective approaches. Manual 

assessments are also resource intensive. In response to these challenges posed by manual assessments in structural 

MRI protocols there has been a notable advancement in the development of automated assessment tools. These 

tools, utilizing various machine learning (ML) methodologies (Box 2)14,15, aim to automate – and optimize - the 

longitudinal assessment of treatment response in brain gliomas. In particular, these automated systems are designed 

to address the limitations of manual assessments by offering more accurate, reproducible and efficient methods for 

evaluating treatment responses and tumor metrics. In this systematic review, we aimed to analyze and summarize 

the diagnostic accuracy of current ML algorithms used for longitudinal treatment response assessment. Whilst our 

primary objective was to examine the overall automated treatment response assessment based on ML, a secondary 

objective was to investigate the underlying automated tumor segmentation. 

Box 2: Overview of methods in artificial intelligence. 

 

Artificial Intelligence (AI) encompasses a wide array of computational techniques aimed at enabling machines to 

mimic human intelligence. Within AI, machine learning (ML) represents a subset of algorithms that learn complex 

patterns from data without explicit programming for each specific outcome, in order to produce analytical models 

that can make predictions. Neural networks are a key ML approach inspired by the human brain’s structure and use 

interconnected nodes (like neurons) to process data through sequential layers which perform the pattern recognition 

process. Deep learning (DL), a subset of ML, uses neural network architectures with multiple layers such as 

convolutional neural networks (CNNs). CNN architectures like U-Net can be used for specialized tasks like image 

segmentation. In neuro-oncology, CNN models can be applied to MRI scans to segment tumors or to produce 

diagnostic, prognostic, predictive or monitoring biomarkers16. Other deep learning examples in neuro-oncology 

might use even more advanced neural network architectures like generative adversarial networks (GANs) that can 

be used to synthesize specific MRI sequences, such as generating contrast-enhanced T1-weighted images of tumors. 

In summary, AI techniques can be widely applied to clinical decision-making (using a variety of data including 

images) and image analysis which can enhance efficiency and accuracy of tasks such as tumor segmentation, 

treatment response assessment, and disease prognosis. 
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2 Method 

This systematic review was registered with PROSPERO (CRD42024496126). The review was organized in line 

with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)17. Where appropriate, 

both Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) methodology18 alongside ML metrics 

from the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) were used to assess the risk of bias for 

each study19. 

 

Search Strategy and Selection Criteria 

Search terms were applied to PUBMED, EMBASE, and Web of Science databases to extract original research 

articles published from January 2010 to November 2024 encompassing both text words and database-specific 

subject headings (Supplementary Table S1). Specifically, we used Medical Subject Headings (MeSH) for 

PUBMED; EMTREE subject heading terms for EMBASE; and a broader combination of keywords for Web of 

Science. For example, our PUBMED search strategy was as follows: we used the keywords combination 

(‘automated’ or ‘automatic’ or ‘pipeline’ or ‘AI’ or ‘artificial intelligence’ or ‘ML’ or ‘machine learning’ or ‘deep 

learning’ or ‘radiomics’) AND (‘brain tumor’ or 'brain metastases' or ‘glioma’ or ‘glioblastoma’) AND 

(‘longitudinal’ or ‘follow-up’ or ‘follow up’ or ‘treatment response’ or ‘monitoring biomarker’ or ‘response 

assessment’ or ‘monitoring’) AND (‘MRI’ or ‘magnetic resonance imaging’ or ‘magnetic resonance’ or ‘MR’), 

including both English and Chinese language publications, with a date range from January 1, 2010, to November 25, 

2024. The 2010 starting point was chosen because it coincided with the publication of the first RANO paper6. 

Preprints, abstracts, reviews, editorials, reports, letters, book chapters, case reports, symposiums, retracted papers or 

articles without peer review were excluded (Fig. 1). The references of all selected articles were hand-searched to 

identify any potentially relevant studies missed in the initial database search.  

 

Studies were deemed eligible for inclusion if they assessed the longitudinal treatment response of any type of brain 

tumor (i.e., both benign and malignant tumors) using ML methodologies. In the context of this study, ML 

methodologies are those that enable computers to learn from retrospective data, by automatically tuning algorithms 
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that are not solely composed of explicit instructions, and autonomously make decisions or predictions for 

prospective use. The definition includes deep learning (DL) which is a type of ML based on artificial neural 

networks in which multiple layers of processing are used to extract progressively higher-level features from data. 

The patient cohort was restricted to adult patients (≥ 18 years old) who underwent standardized treatment and 

subsequent imaging to evaluate treatment outcomes. Ineligible studies included those reporting on only pediatric 

populations; those without clinical experiments; and those using only animal models. We also excluded all studies 

without longitudinal analysis, for example prognostic, diagnostic or monitoring biomarkers using a single timepoint 

to determine treatment response by radiomic analysis. Research that only compared preoperative and early 

postoperative (i.e., < 72 hours) imaging timepoints cannot be considered as providing longitudinal assessments of 

treatment response and were thus excluded. 

 

A meta-analysis could not be performed due to a lack of sufficient homogenous studies identified from the 

systematic review and marked heterogeneity in the methodology of these included studies. 

 

Data Extraction  

A neuroimaging data scientist, T.S., with 2 years of experience in neuroimaging applied to neuro-oncology, 

independently performed the data extraction and quality assessment. A.K., a neuroimaging data scientist with 8 years 

of experience in neuroimaging applied to neuro-oncology also independently performed the data extraction. A junior 

neuro-oncologist (UK specialist trainee grade; US fellow equivalent). C.A.L., with 5 years of experience in 

neuroimaging applied to neuro-oncology, also independently performed the quality assessment. Discrepancies 

between the reviewers were considered at research meetings with a senior neuroradiologist (UK consultant; US 

attending equivalent) T.C.B. with 17 years’ experience of neuroimaging applied to neuro-oncology, and T.V., a 

neuroimaging data scientist with 15 years of experience in neuroimaging applied to neuro-oncology, until a consensus 

was reached.  
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Data extracted from each study included the type and grade of brain tumor, and whether classification was based on 

WHO 2016 or 2021 criteria20,21; whether data was obtained from single or multiple institutions; the size of training 

and testing sets; the types of MRI sequences used; and whether the study was retrospective or prospective. We also 

analyzed the automated models for longitudinal assessment (assigned as index tests) and any automated sub-

components within the pipeline, as well as the reference standard applied (e.g., RANO 2010). Performance metrics 

for sub-components prior to longitudinal assessment e.g., segmentation, were collected alongside longitudinal 

assessment performance metrics. Performance metrics extracted were based on index test results compared to 

reference standard results. Depending on the task, metrics extracted included, for example, Dice coefficient, 

intraclass correlation coefficient (ICC) or area under the receiver operating characteristic curve (AUC) values. 

 

Risk of Bias Assessment 

To evaluate diagnostic accuracy, we applied QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies 2) 

methodology18, a tool specifically designed for the systematic assessment of the quality of diagnostic accuracy 

studies. This analytical framework facilitates the appraisal of risk of bias and applicability concerns across four key 

domains: patient selection, index tests, reference standards, and flow and timing. A three-tiered rating system 

comprising 'low', 'high', or 'unclear’ risk of bias or applicability concerns, was employed. 

 

Each domain was systematically evaluated with carefully prepared criteria. For patient selection, we appraised key 

aspects such as whether participants were enrolled in the study consecutively or at random, followed a standard 

treatment protocol, and were subject to any inappropriate exclusions. We also evaluated studies as to whether all 

appropriate exclusions had been applied. For the index test and reference standard domains, we appraised whether 

blinding was employed during respective formulation or evaluation, and whether relevant clinical confounding 

characteristics had been accounted for. We also confirmed whether all participants were included in the analysis, 

and whether the same reference standard had been applied to them to ensure uniformity. We also determined 

whether pre-specified thresholds prior to index testing had been fixed a priori. 
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3 Results 

In all, 2088 citations fulfilled the search criteria of which the full text of 762 potentially eligible articles were 

reviewed (Fig. 1). A total of 20 studies were included in the final analysis and are listed in Table 1. (22-41) 

Study characteristics 

As shown in Table 1, in terms of dataset utilization, 60.0% (12/20) of studies included grade 2-4 glioma, with 66.7% 

(8/12) of studies focusing solely on glioblastoma (studies used grade IV glioma WHO 2016 definition). The 

remainder, 40.0% (8/20) of studies, focused on brain metastases.  

 

Studies differed as to whether they were either validation-only studies, or combined development and validation 

studies. Of 50.0% (10/20) studies that trained ML models and conducted tests with hold out data, all (100% 10/10) 

studies utilized internal test data, and 40.0% (4/10) studies additionally employing external test data. The remaining 

study 5.0% (1/20) only used external test data, and 45.0% (9/20) did not involve model training (i.e., the latter were 

validation-only studies where the ML model had been developed in a previous study).  

 

There were 55.0% (11/20) studies using multi-institutional data. Few studies incorporated prospective data (15.0%, 

3/20). 60.0% (12/20) of studies used post-operative data only for training or testing, while 40.0% (8/20) of studies 

trained segmentation models using predominantly pre-operative data or combined with a little post-operative data, 

and then applied the trained model to post-operative testing data. Such a strategy is expedient because pre-operative 

datasets are arguably more abundant and accessible than post-operative datasets; pre-operative datasets were 

typically from the Brain Tumor Segmentation (BraTS) Challenge42. Despite the benefits of expediency, while 

current results of test data might be acceptable, the domain gap of such an approach leads to risks of poor 

generalizability. 
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Most studies (70.0%, 14/20) employed more than one MRI sequence. Structural imaging sequences (T1-weighted 

(T1), T1-weighted post contrast (T1 C), T2-weighted (T2), and FLAIR) were predominantly used, with T1 C 

applied in 90.0% (18/20) of the studies, in keeping with its pivotal role in therapeutic response assessment6,43. Some 

studies 10.0% (2/20) also used diffusion-weighted imaging (DWI) or apparent diffusion coefficient (ADC) maps44.  

 

Regarding implementation methodologies, whilst our inclusion criteria required employing some form of ML-based 

automation, the extent of automation varied with 80.0% (16/20) of studies achieving complete automation from start 

to finish without manual intervention. The remainder (20.0%, 4/20) used semi-automatic frameworks with manual 

intervention. 

 

Most studies (85.0%, 17/20) focused on advanced ML algorithms by utilizing deep neural networks for learning and 

inference, such as employing a 3D U-Net based model22,23 for segmentation assessment. The remainder, 15.0% 

(3/20), did not use deep learning. 

 

In longitudinal assessment, most studies (75.0%, 15/20) employed RANO-based criteria, calculating the diameter 

and/or volume change, as the assessment method for evaluating therapeutic response. Amongst these, 40.0% (6/15) 

were based on brain metastases RANO (RANO-BM)7, 33.3% (5/15) were based on high-grade glioma RANO 

(criteria from 2010)6, and 26.7% (4/15) on modified high-grade glioma RANO (criteria from 2017 where a key 

difference is that the baseline MRI is the one performed soon after radiotherapy completion)8. In terms of 

measurements, 66.7% (10/15) studies utilized diameter measurement methods, with 30.0% (3/10) employing 

‘RANO 2010’6, 30.0% (3/10) employing ‘modified RANO 2017’8, and 40.0% (4/10) employing RANO-BM7 

criteria. Following RANO 2010 or modified RANO 2017 criteria6,8, a few of these studies additionally used volume 

measurement methods (20.0%, 3/15) whilst the rest (26.7%, 4/15) only employed volume measurement assessments. 

In the remaining 25.0% (5/20) of studies where RANO-based criteria were not employed, evaluation metrics were 

solely based on volume change in 60.0% (3/5), while 40.0% (2/5) of studies incorporated both volume and diameter 
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changes for assessment. We also note that 40.0% (8/20) of studies were based on newly diagnosed patients and 

30.0% (6/20) on recurrent patients, with the remaining 30.0% (6/20) unknown. 

 

QUADAS-2 assessments of the included studies  

The results of the QUADAS-2 stratified analysis18 of both risk of bias and applicability across four domains, (patient 

selection, index test(s), reference standard, and flow and timing), is presented in Figure 2, Supplementary Table S2 

and Supplementary Table S4. In terms of risk of bias and concerns regarding applicability, only 15.0% (3/20), 

15.0% (3/20), 20.0% (4/20) and 60.0% (12/20) are considered at ‘low’ risk in the domains of patient selection, index 

test(s), reference standard, and flow and timing, respectively. The corollary is that there is either an 'unclear' or 

‘high’ risk of bias and applicability concerns in most studies.  

 

When focusing on particular aspects of bias, a more nuanced picture emerges. In the patient selection domain, we 

observed that the majority of studies (50.0%, 10/20) had included patients undergoing a clearly stated treatment 

protocol (e.g., Stupp protocol for glioblastoma)1,45; 45.0% (9/20) studies explicitly stated that patients were enrolled 

as either a consecutive or random sample; and half the studies (60.0%, 12/20) applied appropriate exclusions (e.g., 

the studies excluded cases without documented original histology or incomplete or poor-quality imaging data). 

Similarly, several components of good study design reducing bias risk in the index tests and reference standard 

domains were also evident in many studies. First, researchers had been blinded to the reference standard 

performance when considering index test performance in most studies (90.0%, 18/20) – and vice versa in (80.0%, 

16/20) studies. The blinding ensured the reliability of the outcome measurement and reduced the potential for 

verification bias. Second, it was clearly stated that trained model parameters had been fixed during the testing 

process in almost all studies (85.0%, 17/20). Third, in all experiments, at least one senior radiologist was involved in 

manual annotation. 
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4 Discussion 

 

Summary of findings 

Automated longitudinal treatment response assessment of brain tumors has been achieved for brain metastases, as 

well as both high- and low-grade gliomas. The prevailing approach remains the development of ML-based methods 

emulating RANO criteria6-8, with glioblastoma being the commonest tumor to be assessed. When ML-based 

methods were employed as the index test and compared to the reference standard of expert manual assessments, the 

performance accuracy was generally good. However, there was a high or unclear risk of bias within most studies due 

to incomplete published information and a lack of rigor in experimental design, which constrains the widespread 

applicability of the automated systems. Similarly, there was no clear evidence indicating that the automated systems 

could be applied in clinical settings. Despite the quality assessment findings, and despite the fact that the studies are 

generally of a low level of evidence46, there is value in interrogating these individual studies as they represent the 

current state of the art and form a baseline for further research. 

 

Study explanations and relevance from a national and international perspective  

This is the first systematic review of automated longitudinal treatment response assessment studies for brain tumors. 

It has shown that the neuro-oncology imaging research community have leveraged the ability to obtain, process and 

store digital images, harnessed the improved performance of registration and segmentation tools -and taken together 

– have built automated treatment response assessment tools. However, whilst analytical validation5 has been 

demonstrated to be technically possible for a range of brain tumors, almost all current studies are compromised by 

bias and are best considered as proof-of-concept studies. One recent multi-reader validation study has largely 

avoided bias24, but the study design does not constitute comprehensive clinical validation5 (Box 3). Therefore, from 

published evidence, no tool is definitively ready for clinical use and more research is required to ensure this. Being 

clinic-ready is important because once performance accuracy is satisfactory in providing treatment response 

assessment during either a clinical trial investigating therapeutics or during routine patient follow up, there is a high 

likelihood of benefit for both the patient and healthcare system. The key potential benefit is that a clinically 
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validated tool will reduce or eradicate interobserver error of treatment response assessment by giving a more 

reproducible and standardized result, and that the tool will reduce the burden of time and costs spent on clinical 

trials. Beyond trials, it is also plausible that a clinically validated tool will improve consistency in routine patient 

follow up in the clinic and therefore allow more rational management decisions. 

 

Limitations - studies assessed  

Whilst the studies assessed show numerous strengths they are not without their limitations. First, few studies 

employed external testing limiting the analytical validation process5, so it is unclear whether the tools are 

generalizable and therefore applicable for further use at other sites. Second, few studies used prospective data, and 

none employed tools embedded in the clinical or trial workflow, therefore clinical validation5 steps are still required. 

Third, given that RANO 2.0 was only published in 2023, no studies using ML-based automation have yet conducted 

experiments based specifically on the updated criteria9. Fourth, there is a clear need for more studies to adopt fully 

automated measurement techniques (diameters and volume changes calculation) to enhance the accuracy and 

consistency of RANO assessments; at least a quarter are semi-automated. Fifth, RANO criteria6-9, and the 

Macdonald criteria13 that preceded them, replaced the previous World Health Organization (WHO) 

recommendations47 which considered all brain tumors as solid entities during measurement. The Macdonald criteria 

allowed assessment of tumor within cavity walls but did not distinguish between the presence of necrosis or a 

surgical resection in a ‘cyst-like’ cavity. The RANO criteria indicated that any cyst-like cavity should not be 

measured. However, numerous studies – including automated longitudinal treatment response assessment tools 

purporting to follow RANO criteria – often demonstrate the inclusion of some or all cyst-like cavities during tumor 

measurement, e.g.,22-24,34,36. It is conceivable that global segmentation competitions where concepts such as ‘entire 

tumor core’ which have included cyst-like cavities by definition, have disproportionately influenced the current 

models. In the application of RANO criteria6-8 as a reference standard, a bidimensional and volumetric measurement 

systematic error will reduce the accuracy of both the reference standard and the index test6-8. Reproducibility is 

likely to be impacted too as reference standard systematic errors will likely vary between sites. Sixth, segmentation 

competitions such as BraTS42 have almost always included pre-operative datasets alone; this poses a challenge for 

developing generalizable models for the use case of longitudinal treatment response which needs at least some post-
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operative datasets. Incorporating more post-operative data in these challenges – as has occurred in BraTS 202442,48 is 

meaningful as it better aligns with the assessment of treatment response in clinical practice and future research. 

Seventh, few studies explicitly stated that patients were enrolled as either a consecutive or random sample, and in 

approximately half the studies, there was no evidence to demonstrate that all appropriate exclusions were applied. 

This lack of clarity suggests a potential bias in patient selection, which could limit the generalizability of the 

research findings. Eighth, when designing the index test, few studies (15.0%, 3/20) explicitly stated that they 

considered relevant clinical characteristics important for final longitudinal treatment response assessment. When 

considering using RANO criteria as a reference standard in glioma, for example, factors such as a change in 

performance status, a change in the use of corticosteroids, and the start of second-line treatment are essential for 

final longitudinal treatment response assessment as RANO is a clinico-radiological assessment49. Ninth, there was a 

mismatch between the proposed RANO study scheme and the actual baseline used in the study as the modified 

RANO baseline is the first scan after radiotherapy, and the RANO 2010 baseline is after surgery but before 

radiotherapy6,8.  

 

Limitations - review process 

This paper is the first systematic review of automated pipelines that assess brain tumor treatment response using 

ML. However, the review still has some limitations. First, our review did not include those ML studies that only 

provide theoretical foundations or preliminary data without experiments50. While these studies do not involve direct 

clinical experiments, it is plausible that they are potentially valuable for the development of longitudinal treatment 

response assessment tools. Second, we also excluded those automated pipelines without ML even if they were able 

to assess automated longitudinal treatment response, as they were beyond the remit of the systematic review. 

Nonetheless for comparison, some important studies that utilize automatic algorithms, such as those using the 

region-growing algorithm to achieve automation51-53, are shown in Supplementary Table S3. Third, studies were 

excluded which focused on the development of prognostic biomarkers for overall survival (OS) based on 

radiographic feature changes54. However, there is some overlap in longitudinal research methodology which might 

be relevant to treatment response assessment. Fourth, publication bias may also have affected the range of 

automated pipelines of treatment response included in this systematic review. Related to this, the exclusion of pre-
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prints and non-peer reviewed material may exacerbate publication bias. In particular, given that some in the data 

science community may not submit their work in peer-reviewed journals, as peer review is relatively slow compared 

to the speed at which data science develops, it is plausible that publication bias relates to the make-up of the 

researcher team12. For example, more clinically orientated teams may be more inclined to publish in a peer reviewed 

journal compared to more data science-orientated teams who sometimes use pre-prints alone or full-length 

conference proceedings12. Fifth, our search strategy may not have captured all relevant studies. 

 

Current Evidence in the Field 

This is the first systematic review of automated longitudinal treatment response assessment studies for brain tumors. 

The response evaluation criteria in solid tumors (RECIST) is a widely-used reference standard for evaluating 

efficacy of therapies in patients with solid tumors which are included in clinical trials and it is widely used and 

accepted by regulatory agencies55. Similar to brain tumor response assessment using automated RANO assessments, 

automation of RECIST is desirable as it can potentially streamline the process and potentially reduce the variability 

of results within the RECIST55. However, there remain technical challenges which must be overcome to ensure 

reproducibility, and currently there are no clinic-ready automated RECIST studies to the best of our knowledge. The 

current evidence suggests that RANO6-8 appears more likely to achieve full automation with fewer remaining 

challenges compared to RECIST55. 

 

Implications for clinical practice and future research 

These automated tools can enhance the overall efficiency of tumor treatment response assessment and reduce 

interobserver variability. Whilst the main intention for RANO assessments - including when using automated tools - 

is to produce measurable, standardized, and meaningful outcomes for clinical trials, approximating RANO 

assessment into routine real-world follow up assessment may also help clinicians make more reproducible treatment 

decisions given the complexities of interpreting MRI data11. If further developed and validated, it is plausible that 

automation might overcome the time-consuming process preventing RANO-like assessments being routinely 
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available in the clinic. Considering the directions for future developments, attention should be focused on the main 

aspects detailed hereafter. 

 

First, new automated tool developments incorporating the requirements of criteria like RANO 2.0 (which 

incorporate bidimensional diameters and volumes, use different contrasts, and allow assessment of both high-grade 

gliomas and low-grade gliomas9), are likely to support future clinical trials and be more translatable to the clinic. 

Second, adherence to the incorporation of tumor tissue demarcated by T1 C, as opposed to including voluminous 

cyst-like regions, is needed in ML models to keep RANO assessments as they were intended during inception over a 

decade ago. Third, to enhance utility, given that treatment response assessment of brain tumors is a clinico-

radiological assessment, tool interfaces would benefit from having the option to integrate clinical information such 

as changes in performance status or steroid use and/or contain user warnings to not confound assessment by not 

considering confounders such as early second-like treatment12 which is a common concern for RANO 

assessments8,9. Fourth, consideration should also be given to distinguishing target lesions, measurable lesions, and 

whether lesions are inside or outside the radiotherapy field – all of which are requisites for the assessment of 

longitudinal treatment responses in RANO9. Fifth, it should be noted that there is ongoing controversy regarding the 

optimal approach to measuring brain tumors over time. For glioblastomas, it remains unclear whether measurements 

should focus solely on the enhancing portion or also include non-enhancing FLAIR signal abnormalities. Similarly, 

for IDH-mutant gliomas, standardized measurement strategies are not yet well-defined. Additionally, as highlighted 

by RANO 2.0 criteria9, volumetric measurements have not been shown to be unequivocally superior to orthogonal 

diameters. Furthermore, clinical trials seeking to modify the Stupp protocol may influence the selection of a "post-

treatment baseline," but the implications of these modifications remain uncertain. In summary, the RANO criteria, 

as articulated from inception in 2010, are best considered as works in progress and will continue to evolve.6 

 

In terms of evidence generation, there is a need for more validation studies containing external test datasets and 

prospective datasets to demonstrate that automated tools are ready for downstream clinical requirements. When 

selecting patient cohorts, it is advisable to consider using consecutive or random samples, follow a standard 
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treatment protocol, avoid inappropriate exclusions (i.e., cherry-picking), and apply all necessary exclusions (e.g., 

lack of histology, incomplete or poor-quality imaging data). 

 

It is acknowledged that a focus on RANO assessment, especially for high-grade gliomas, fails to consider 

approaches other than fixed interval imaging where utility is unclear4,11. It is also acknowledged that a focus on 

RANO assessment, especially for high-grade gliomas, and the use of T1C images alone in many studies, fails to use 

all the data produced during an MRI scan. Nonetheless, some studies included in the current review were not 

constrained to T1C only, potentially allowing for a more nuanced understanding of tumor behavior and response to 

treatment across different imaging and clinical scenarios. For example, in high-grade gliomas DWI/ADC is a 

surrogate marker of tumor cell density and has been used to assess aggressiveness, while T2 contrast is effective in 

displaying broader tumor-host behavior56-59. Future research may go beyond the limitations of RANO assessment 

and even incorporate advanced MRI as well as multi-modal techniques such as a combination of MRI and positron 

emission tomography60.  

 

Similarly, treatment response assessment may be improved through another key area of research in neuro-oncology 

imaging which is the development of advanced MRI and radiomic prognostic, predictive and monitoring biomarkers 

which have a role in treatment response assessment56. Integrating radiomic biomarkers with automated longitudinal 

treatment response assessment frameworks offers a promising avenue for enhancing precision in tracking tumor 

responses across various brain tumor types54,61. 

 

Box 3: Comprehensive clinical validation 

 

Comprehensive clinical validation would require not only embedding tools within the clinical or trial workflow but 

also demonstrating robust real-world utility across diverse patient populations and clinical settings. This also 

includes validation datasets from multiple institutions to ensure generalizability; testing with varied imaging 

protocols and scanner vendors; and prospective trials that assess clinical outcomes when using these tools in 
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decision-making. 

 

5 Conclusion 

The systematic review demonstrates the potential of automated tools to enhance the accuracy and reliability of 

treatment response assessments in brain tumors. Studies achieving complete automation from start to finish without 

manual intervention will contribute to the consistency and efficiency of data processing, likely minimizing the 

potential for human error and workload. However, automated tools are not clinic-ready and further research, 

especially incorporating external test datasets and prospective datasets, is now needed for more robust validation. 

Successful demonstration of tool use in the clinic or in clinical trials is also now required to complete clinical 

validation. 
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Figure 1. Flow diagram of search strategy. The flowchart depicts the systematic review search strategy and 

selection process. Initially, 2088 records were identified from PUBMED, EMBASE, and Web of Science databases 

of which 1200 records were examined further. Of these, 918 studies were retrieved for detailed evaluation, including 

4 additional studies extracted from citation searches. Following abstract analysis, 762 full-text articles were assessed 

for eligibility. This process culminated in the inclusion of 20 studies in the final analysis. 

 

 

Figure 2. Summary of the QUADAS-2 assessments of the included studies. Graphical representation 

of included studies (in percentages) in each key domain in terms of the risk of bias and the concerns regarding 

applicability. each bar signifies the assessed risk levels, with blue indicating ‘low’ risk/concern, orange signifying 

‘high’ risk/concern, and gray denoting ‘unclear’ risk/concern. 
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Table 1. Studies applying machine learning to automated longitudinal treatment response assessment for brain tumors. This table synthesizes 20 studies 

highlighting the datasets used, research designs, and machine learning models employed. It summarizes the automated processes implemented in the pipeline, 

such as brain extraction, tumor segmentation, and volume measurement. Performance metrics are presented based on published information or calculated from 

available data – the metrics vary according to task.  

Study Dataset 

1. Tumor type 

2. Retrospective/  

Prospective 

3. Single/Multiple sites 

4. Sequences 

5. Numbers 

Pipeline steps Automated model(s)  

(index test(s), in 

comparison with 

reference standard(s)) 

Performance metrics for tasks prior 

to longitudinal assessment e.g., 

segmentation 

 

Longitudinal performance metrics 
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Chang, et al.22  Dataset 1 Preoperative cohort: 

1. Grade II-IV glioma (pre 2021 WHO 
classification) 

2. Retrospective 

3. Multisite (4 sites) 

4. T1 C, FLAIR 

5. 843 patients with 843 MRIs (3 site 

cohorts split 4:1 into train/test sets, one 

site as external test set with 157 
patients) 

 

Dataset 2 Post-operative cohort: 

1. Grade IV glioma (Glioblastoma) (pre 
2021 WHO classification) 

2. Retrospective 

3. Single-site 

4. T1, T1 C, FLAIR 

5. 54 patients with 713 MRIs (train: test 
= 4: 1) 

 

Dataset 3: A randomly selected cohort 

from Dataset 1 and 2: 42 patients (30 
train; 12 test) 

1. Preprocessing 

a. Resampling 

b. N4 bias correction 

c. Registration 

d. Intensity normalization 

e. Skull-stripping (Brain 
extraction) 

2. Segmentation 

3. Modified RANO8-based bi-
dimensional product calculation 

 

 

3D U-Net compared to 

expert manual extraction 

and segmentation 

 

Automated modified 

RANO8 calculation 

compared to manual 

calculation 

 

Automated volume 

assessment compared to 

volume assessment based 
on manual segmentation 

a. Brain extraction: DSC (95% CI) = 
0.94 (0.92 – 0.95) (Dataset 3 test) 

b. FLAIR segmentation: DSC = 0.80 

(0.75 – 0.80) & volume ICC = 0.92 (P 

< 0.001) (Dataset 1 test); DSC = 0.82 

(0.79 - 0.84) & volume ICC = 0.92 (P 

< 0.001) (Dataset 1 external test); DSC 

= 0.70 (0.67 – 0.73) & volume ICC = 
0.92 (P < 0.001) (Dataset 2 test)  

c. ET segmentation: DSC = 0.70 (0.66 

– 0.73) & volume ICC = 0.97 (P < 

0.001) (Dataset 2 test) 

 

a. FLAIR volume longitudinal change ICC = 
0.92 (P < 0.001) (Dataset 2 test) 

b. ET volume longitudinal change ICC = 0.97 

(P < 0.001) (Dataset 2 test) 

c. RANO bi-dimensional product (ET) ICC 

range 0.50-0.77 (P < 0.001) (individual rater 
differences) (Dataset 2 test) 

d. RANO bi-dimensional product (ET) 

longitudinal change ICC = 0.85 (P < 0.001) 

(combined raters) (Dataset 2 test) 
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Nalepa, et al.23  Dataset 1 BraTS 2020 preoperative 
dataset: 

1. Grade 4 glioma (Glioblastoma) 

(WHO, 2021) 

2. Retrospective 

3. Multisite 

4. T1, T1 C, T2, FLAIR 

5. 660 patients with 660 MRIs (369 
train; 125 validate; 166 test) 

 

Dataset 2 Phase 3 cohort: 

1. Grade 4 glioma (Glioblastoma) 
(WHO, 2021) 

2. Retrospective 

3. Multisite 

4. T1, T1 C, T2, FLAIR 

5. 100 patients with 100 preoperative 
MRIs (100 train) 

504 patients with 504 postoperative 
MRIs (464 train; 40 test) 

1. Preprocessing 

a. Co-registration 

b. Skull-stripping 

c. Resampling 

2. Segmentation 

3. RANO6-based bi-dimensional 
product calculation 

 

 

Confidence-aware nnU-Net 

compared to manual 

segmentation 

 

Automated RANO6 

calculation compared to 
manual calculation 

 

Automated volume 

assessment compared to 

volume assessment based 
on manual segmentation 

a. Segmentation performance for ET 
(Dataset 1 validate and test) 

mean DSC = 0.744 (95%CI = 0.690-

0.799); mean H95 = 39.624 mm 

b. Segmentation performance (Dataset 
2 test) 

mean DSC (95% CI) = 0.692 (0.628–

0.757), 0.677 (0.631–0.724) and 0.691 

(0.604–0.778) for ET, ED, and 

surgical cavity; mean H95 (25p–75p) 

= 9.221 mm (6.437–12.000 mm), 

9.455 mm (7.176–11.730 mm) and 

7.956 mm (5.938–9.975 mm) for ET, 
ED, and surgical cavity 

d. Automatic segmentation volumetric 

measurements agreement with GT 
(Dataset 2) 

ICC (ET): 0.959 mm³ (p < 0.001) 

ICC (cavity): 0.960 mm³ (p < 0.001) 

ICC (ED): 0.703 mm³ (p < 0.703) 

a. Inter-rater agreement for RANO 
bidimensional measurements (Dataset 2 test) 

manual RANO compared to Automated 

RANO (Diameters) (ET) ICC = 0.299–0.866 
(p < 0.001) 

manual RANO compared to Automated 

RANO (Product) (ET) ICC = 0.292–0.858 (p 

< 0.001) 

maximum manual RANO compared to 

Automated RANO (Diameters) ICC: 0.915 (p 
< 0.001) 

maximum manual RANO compared to 

Automated RANO (Product) ICC: 0.919 (p < 

0.001) 

Vollmuth, et 

al.24  

Dataset 1 Heidelberg Cohort: 

1. Grade II-IV glioma (pre 2021 WHO 

classification) 

2. Retrospective 

3. Single-site 

3. T1, T1 C, T2, FLAIR, DWI, ADC 

4. 30 patients with 450 pairs 

assessment results 

1. Preprocessing 

a. Skull-stripping 

b. Co-registration 

c. T1 subtraction 

2. Segmentation 

3. Calculation of TTP 

Automated nnU-Net based 

segmentation and modified 

RANO8 assessment 

compared to manual 

segmentation and 
assessment 

 

AI-based TTP assessment 

compared to Manual TTP 
assessment 

N/A a. TTP Assessment comparison between 

investigators using AI assistance (95% CI): 

CCC = 0.91 (0.82-0.95) (p = 0.005) (Dataset 
1) 

b. LGG TTP (95% CI): CCC = 0.90 (0.76-
0.95) (p = 0.008) (Dataset 1) 

c. Glioblastomas TTP (95% CI): CCC = 0.83 

(0.75–0.92) (p = 0.016) (Dataset 1) 

d. SD TTP Measurements (95% CI): 4.8 

months (3.7-6.2 months) (p = 0.004) (Dataset 
1) 

e. SD LGG TTP (95% CI) = -1.7 months (-4.2 
to -1.1 months) (Dataset 1) 

f. SD Glioblastoma TTP (95% CI) = -0.1 

months (-0.5 to 0.0 months) (p < 0.001) 
(Dataset 1) 
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Rudie, et al.25 Dataset 1 BraTS 2020 preoperative 
dataset: 

1. Grade 4 glioma (Glioblastoma) 

(WHO, 2021) 

2. Retrospective 

3. Multisite 

4. T1, T1 C, T2, FLAIR 

5. 369 patients with 369 MRIs (All for 
training an initial segmentation network 

 

Dataset 2 Retrospective posttreatment 
cohort: 

1. Grade 2-4 glioma (WHO, 2021) 

2. Retrospective 

3. Single-site 

4. T1, T1 C, T2, FLAIR 

5. 298 patients (198 train; 100 test) 
with 596 MRIs 

1. Preprocessing 

a. DICOM to NifTI conversion 

b. Registration 

c. 1 × 1 × 1 interpolation 

d. Skull-stripping 

e. Bias correction 

2. Additional preprocessing between 

two timepoints for longitudinal 
change networks 

a. Registration  

b. Subtraction 

3. Segmentation 

4. Longitudinal volumetric change 

classification  

 

 

nnU-Net segmentation 

network compared to 3D 

U-Net trained only on the 
dataset 1 

 

nnU-Net longitudinal 

change network compared 

to attending 

neuroradiologists manual 

longitudinal volumetric 
change classification 

a. Segmentation network (Dataset 2 

test) [Mean ± SD; Median with 25%–

75% IQRs]  

WT: DSC = [0.86 ± 0.10; 0.89 (0.84–

0.93)]; Volume Similarity = [0.94 ± 

0.10; 0.96 (0.92–0.98)]; HD95 (mm) = 

[6.9 ± 10.0; 3.3 (1.7–7.1.0)] 

ED: DSC = [0.85 ± 0.11; 0.8 (0.83–

0.92)]; Volume Similarity = [0.94 ± 

0.09; 0.96 (0.92–0.99)]; HD95 (mm) = 
[6.6 ± 10.1; 3.0 (1.4–6.7)] 

TC: DSC = [0.71 ± 0.27; 0.82 (0.55–

0.92)]; Volume Similarity = [0.82 ± 

0.25; 0.95 (0.74–0.98)]; HD95 (mm) = 
[8.6 ± 14.6; 10.4 (1.4–8.3)] 

ET: DSC = [0.71 ± 0.26; 0.82 (0.55–

0.92)]; Volume Similarity = [0.83 ± 

0.25; 0.96 (0.80–0.99)]; HD95 (mm) = 
[8.2 ± 14.7; 10.4 (1.0–7.9)] 

NCR: DSC = [0.65 ± 0.29; 0.72 (0.49–

0.88)]; Volume Similarity = [0.80 ± 

0.26; 0.90 (0.74–0.97)]; HD95 (mm) = 
[5.9 ± 8.1; 10.4 (1.4–6.0)] 

a. Longitudinal change network (Dataset 2 
test) 

[Mean ± SD; Median with 25%–75% IQRs]   

ED change: DSC = [0.73±0.25; 0.83 (0.64–

0.88)]; Volume Similarity = [0.84±0.27; 0.94 

(0.85–0.98)]; HD95 (mm) = [10.3±11.6; 5.7 
(2.0–15.1)]  

ET change: DSC = [0.60±0.26; 0.67 (0.45–

0.81)]; Volume Similarity = [0.73±0.27; 0.86 

(0.68–0.92)]; HD95 (mm) = [14.2±16.9; 5.4 
(2.5–19.4)] 

b. Longitudinal classification performance for 
three classes (Dataset 2 test) 

ED Longitudinal change network: Sensitivity 

= 0.91; Specificity = 0.91; PPV = 0.89; NPV = 
0.93; F1 = 0.85; Accuracy = 0.91; P = 0.84 

ET Longitudinal change network: Sensitivity 

= 0.88; Specificity = 0.92; PPV = 0.88; NPV = 
0.92; F1 = 0.88; Accuracy = 0.90; P = 0.61 

c. Longitudinal classification performance for 

two classes (Dataset 2 test) 

ED Longitudinal change network: Sensitivity 

= 0.94; Specificity = 0.93; PPV = 0.86; NPV = 
0.97; F1 = 0.90; Accuracy = 0.93; P = 0.81 

ET Longitudinal change network: Sensitivity 

= 0.87; Specificity = 0.94; PPV = 0.87; NPV = 

0.94; F1 = 0.87; Accuracy = 0.92; P = 0.48 
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Strack, et al.26  Dataset 1 Local dataset: 

1. Grade IV glioma (glioblastoma) (pre 
2021 WHO classification) 

2. Retrospective 

3. Single-site 

4. T1 C 

5. 15 patients 

 

Dataset 2 TCIA dataset: 

1. Grade IV glioma (glioblastoma) (pre 
2021 WHO classification) 

2. Retrospective 

3. Multisite 

4. T1 C 

5. 20 patients with 40 MRIs 

1. Preprocessing 

a. Resampling 

b. Histogram matching 

c. Normalization 

d. Brain centering 

e. Skull-stripping 

2. Augmentation 

a. Shifting  

b. Rotation 

c. Gaussian noise 

3. Segmentation by BraTS model 

4. Wasserstein GANs learning 

changes between time 1 and time 2 
images 

5. Modified RANO-based 

classification according to ET 

volume change 

Automated volume change 

assessment and 

classification based on 

Wasserstein GANs 

compared to manual 

volume assessment and 

modified RANO8 

classification 

N/A ROC analysis of tumor change 

micro-average AUC = 0.87 (Dataset 1 & 2); 

total tumor growth AUC = 0.87 (Dataset 1); 

total AUC = 0.86 (Dataset 2); tumor growth 

AUC = 0.72 (Dataset 1); tumor reduction 

AUC = 0.75 (Dataset 1); tumor growth AUC = 

0.94 (Dataset 2); tumor reduction AUC = 0.94 
(Dataset 2)  

b. RANO classification 

overall sensitivity = 0.66 (Dataset 1 & 2); 

overall specificity = 0.83 (Dataset 1 & 2); total 

accuracy = 0.66 (Dataset 1 & 2); sensitivity = 

0.65 (Dataset 1); specificity = 0.82 (Dataset 

1); sensitivity = 0.64 (Dataset 2); specificity = 
0.82 (Dataset 2) 
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Jalalifar, et 
al.27 

Dataset 1:  

1. Brain metastasis 

2. Retrospective 

3. Single-site 

4. T1 C, FLAIR 

5. 116 patients with 152 tumors (train: 

96 patients with 130 tumors; 

independent test: 20 patients with 22 
tumors) 

1. Preprocessing 

a. Resampling 

b. Voxel intensity normalization 

c. Co-registration 

2. Segmentation  

3. Calculating the changes of 
longest diameters and volume 

4. Treatment response classification 
as shrinkage/steady/enlargement 

5. Automatic detection of LC/LF 

and ARE outcome 

 

 

A proposed combination 

model of 2D U-Nets, 3D 

U-Net and MSGA for 

segmentation compared to 

manual segmentation by 

expert oncologists 

 

Automated longest 

diameters and volume 

assessment compared to 

manual longest diameters 

assessment based on 

RANO-BM7 and 

volumetric assessment 

criteria 

 

Automatic detection of 

LC/LF and ARE outcome 

compared to manual 

assessments by expert 

oncologists. 

 

a. Tumor segmentation of baseline and 

follow-up scans (Dataset 1 

independent test) 

DSC = [0.84 ± 0.07, 0.92 ± 0.04] 

HD95 (mm) = [2.1 ± 0.6, 3 ± 0.6] 

VEE (cc) = [0.44 ± 0.4, 0.62 ± 0.6] 

VEE = [0.10 ± 0.05, 0.20 ± 0.09] 

a. Tumor size status detecting (Dataset 1 
independent test) 

Accuracy = 0.86; Precision (Increase) = 0.90; 

Precision (Stable) = 0.75; Precision (Decrease) 

= 1.00; Recall (Increase) = 0.90; Recall 
(Stable) = 0.91; Recall (Decrease) = 0.76 

b. Tumor response assessments by Longest 

Diameter of Tumor (Dataset 1 independent 
test) 

Accuracy = 0.84; (Enlargement, PD) Precision 

= 0.78; (Steady, SD) Precision = 0.92; 

(Shrinkage, PR) Precision = 0.82; 

(Enlargement, PD) Recall = 0.90; (Steady, 

SD) Recall = 0.82; (Shrinkage, PR) Recall = 
0.82 

c. Tumor response assessments by Tumor 
Volume (Dataset 1 independent test) 

Accuracy = 0.81; (Enlargement, PD) Precision 

= 0.76; (Steady, SD) Precision = 0.86; 

(Shrinkage, PR) Precision = 0.80; 

(Enlargement, PD) Recall = 0.80; (Steady, 

SD) Recall = 0.89; (Shrinkage, PR) Recall = 
0.71 

d. Detecting LC/LF and ARE outcomes by 
RANO-BM (Dataset 1 independent test) 

Accuracy (LC/LF) = 0.91; Sensitivity (LC/LF) 

= 0.89; Specificity (LC/LF) = 0.92; Accuracy 

(ARE) = 0.91; Sensitivity (ARE) =1.00; 
Specificity (ARE) = 0.89 
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Kickingereder, 
et al.28 

Dataset 1 Heidelberg training dataset:  

1. Grade II-IV glioma (pre 2021 WHO 
classification) 

2. Retrospective 

3. Single-site 

4. T1, T2, T1 C, FLAIR 

5. 455 patients with 455 MRIs (five-

fold) 

 

Dataset 2 Heidelberg independent test 

dataset:  

1. Grade II-IV glioma (pre 2021 WHO 
classification) 

2. Retrospective 

3. Single-site 

4. T1, T2, T1 C, FLAIR 

5. 40 patients with 239 MRIs 

 

Dataset 3 Heidelberg simulation 
dataset:  

1. Grade II-IV glioma (pre 2021 WHO 
classification) 

2. Retrospective 

3. Single-site 

4. T1, T2, T1 C, FLAIR 

5. 466 patients with 595 MRIs 

 

Dataset 4 EORTC-26101 external 
testing dataset:  

1. Grade IV glioma (glioblastoma) (pre 
2021 WHO classification) 

2. Prospective 

3. Multisite 

4. T1, T2, T1 C, FLAIR 

1. Preprocessing 

a. DICOM to NifTI conversion 

b. Reorientation 

c. Skull-stripping 

d. Registration 

e. T1 subtraction 

2. Segmentation 

3. Tumor response classification 
and TTP calculation 

  

U-Net-based model for 

segmentation compared to 

manual segmentation 

 

Automated volume 

assessment compared to 

manual volume assessment 

based on RANO in 20106 

 

Automated TTP 

calculation compared to 
manual TTP assessment 

a. CE segmentation agreement  

DSC (95% CI) = 0.89 (0.86-0.90) 

(Dataset 2); DSC (95% CI) = 0.91 

(0.90-0.92) (Dataset 4)  

b. CE volume agreement  

DSC (95% CI) = 0·99 (0·99-1.00) 

(Dataset 2); DSC (95% CI) = 0.99 
(0.99-0.99) (Dataset 4)  

c. NE segmentation agreement  

DSC (95% CI) = 0.93 (0.92-0.94) 

(Dataset 2); DSC (95% CI) = 0.93 

(0.93-0.94) (Dataset 4)  

d. NE volume agreement  

DSC (95% CI) = 0.99 (0.99-0.99) 

(Dataset 2); DSC (95% CI) = 0.98 
(0.98-0.99) (Dataset 4)  

e. Concordance Correlation 

Coefficients ≥0.98 (Dataset 2 & 4)  

a. Agreement in quantitative volumetrically 

defined TTP is 0.90, P = 0.94 (Dataset 2) and 

0.87, P = 0.77 (Dataset 4) 

 

Note: no RANO assessment evaluation 
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5. 532 patients with 2034 MRIs 

Chen, et al.29  Dataset 1 longitudinal dataset:  

1. Brain metastases 

2. Retrospective 

3. Single-site 

4. T1 

5. 85 patients with 170 MRIs 

1. BMs detection 

2. Calculating changes in volume 

and number of BM lesions 

 

  

FPN-based CAD of United 

Imaging Intelligence (uAI) 

Discover-BMs software 

compared to manual 

detection and volume 

change measurement 

 

Automated volume and 

number of BMs lesion 

change measurement 

compared to manual 

measurement based on 
RANO-BM7 

a. Metastasis lesions detection (Dataset 

1)  

Sensitivity =0.99; FNs (per scan) = 

0.06; FPs (per scan) = 0.53; X^2 = 
31.15, p < 0.05 

b. Follow-up metastasis lesions 
detection (Dataset 1)  

Sensitivity = 0.98; FNs (per scan) = 

0.08; FPs (per scan) = 0.39; 
X^2=21.09, p < 0.05 

a. Agreement of treatment response between 

automated and manual 

assessment (Dataset 1): kappa = 0.941, p < 
0.05 

  

Meier, et al.30  Dataset 1 longitudinal dataset:  

1. Grade IV glioma (glioblastoma) (pre 
2021 WHO classification) 

2. Prospective 

3. Single-site 

4. T1, T1 C, T2, FLAIR 

5. 14 patients with 64 MRIs 

1. Preprocessing by BraTumIA 

a. Skull-stripping 

b. Intermodality registration 

c. Bias field correction 

2. Voxel-wise segmentation for 

NCE-T2 and ET-T1 C by 

BraTumIA 

3. Volume change measurement 

 

  

Machine learning based 

BraTumIA software 

segmentation compared to 
manual segmentation  

 

Automated volume 

changes assessment by 

BraTumIA compared to 

manual volume changes 
assessment 

a. Volume correlations betweent 

BraTumIA and raters (Dataset 1) r-

values 0.95 to 0.96, p < 0.001 

b. Relative over- or underestimation of 

the volumes (Dataset 1) B compared 
to. R1 0.52 to 9.9 

a. Volume change correlations between 

BraTumIA and raters (Dataset 1) r-values 0.83 

to 0.96, p < 0.001 
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Preetha, et 
al.31 

Dataset 1 Heidelberg cohort:  

1. Grade IV glioma (glioblastoma) (pre 
2021 WHO classification) 

2. Retrospective 

3. Single-site 

4. T1, T1 C, T2, FLAIR, ADC 

5. 775 patients with 775 MRIs 

 

Dataset 2 CORE longitudinal cohort:  

1. Grade IV glioma (glioblastoma) (pre 
2021 WHO classification) 

2. Prospective 

3. Multisite 

4. T1, T1 C, T2, FLAIR, ADC 

5. 260 patients with 1083 MRIs 

 

Dataset 3 CENTRIC longitudinal 
cohort:  

1. Grade IV glioma (glioblastoma) (pre 

2021 WHO classification) 

2. Prospective 

3. Multisite 

4. T1, T1 C, T2, FLAIR, ADC 

5. 505 patients with 3147 MRIs 

 

Dataset 4 EORTC-26101 longitudinal 

cohort:  

1. Grade IV glioma (glioblastoma) (pre 
2021 WHO classification) 

2. Prospective 

3. Multisite 

4. T1, T1 C, T2, FLAIR, ADC 

5. 521 patients with 1924 MRIs 

1. Preprocessing 

a. DICOM to NIfTI conversion 

b. Reorientation 

c. Skull-stripping 

d. Registration 

e. Resampling 

f. Normalization 

g. T1 Subtraction 

2. Synthetic T1 C imaging 
generation 

3. ET segmentation map generation  

4. ET volume change calculation 

 

 

The combination model of 

U-Net and CGAN for 

generation, segmentation, 

calculation based on 

RANO in 20106 compared 

to manual corresponding 
assessment 

 

a. Comparison on automated and 

manual T1 subtraction generation 

(Dataset 4) 

CGAN-SSIM (95% CI) = 0.818 
(0.817-0.820), p < 0.0001 

U-Net-SSIM (95% CI) = 0.809 
(0.807–0.810), p < 0.0001 

b. Agreement in CE segmentations and 

volumes between automatic and 

manual assessment (Dataset 4) 

CCC (95% CI) = 0.782 (0.751-0.807), 
p < 0.0001 

Spatial agreement Sørensen–DSC: r 

(95% CI) = 0.438 (0.401-0.475), p < 

0.0001 

a. Agreement in TTP: comparison based on 

automated and manual T1 subtraction 

generation assessments (Dataset 4)  

automated 4.2 months (95%CI 4.1–5.2) 

manual 4.3 months (95%CI 4.1–5.5)  

p = 0.33  
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Cho, et al.32 Dataset 1 SNUBH training data: 

1. Brain metastases 

2. Retrospective 

3. Single-site 

4. T1, T1 C, T2, FLAIR 

5. 174 patients with 127 MRIs 

 

Dataset 2 SNUBH temporal test set #1: 

1. Brain metastases 

2. Retrospective 

3. Single-site 

4. T1, T1 C, T2, FLAIR 

5. 40 patients with 20 MRIs 

 

Dataset 3 SNUBH temporal test set #2: 

1. Brain metastases 

2. Retrospective 

3. Single-site 

4. T1, T1 C, T2, FLAIR 

5. 12 MRIs 

 

Dataset 4 SNUH external geographic 
test: 

1. Brain metastases 

2. Retrospective 

3. Multisite 

4. T1, T1 C, T2, FLAIR 

5. 24 patients with BM and 11 patients 

without BM 

1. Preprocessing 

a. Normalization 

b. Isotropic reconstruction 

2. Brain segmentation 

3. Brain parenchyma extraction 

4. BM detection using 3D U-Net 

5. BM segmentation using 2D U-
Net (DenseNet 201) 

6. 3D rigid registration 

7. Volumetric changes calculation 

 

 

DL-CAD compared to MD 
for segmentation, detection 

 

Automated compared to 

manual RANO-BM7 (the 

changes of the sum in 

longest diameters) and 

volumetric response 
criteria 

a. BM detection  

Sensitivity (95% CI) = 0.58 (0.53-

0.63); DSC = 0.67 ± 0.23; FP/scan = 

2.50 (Dataset 2) 

Sensitivity (95% CI) = 0.80 (0.61-

0.92); DSC = 0.76 ± 0.26; FP/scan = 
2.20 (Dataset 3) 

Sensitivity (95% CI) = 0.76 (0.66-

0.84); DSC = 0.66 ± 0.22; FP/scan = 

7.60 (Dataset 4) 

b. BM measuring >= 5mm 

Sensitivity (95% CI) = 0.75 (0.70-

0.80); DSC = 0.69 ± 0.22; FP/scan = 
0.80 (Dataset 2) 

Sensitivity (95% CI) = 0.95 (0.74-

1.00); DSC = 0.82 ± 0.20; FP/scan = 

0.50 (Dataset 3) 

Sensitivity (95% CI) = 0.88 (0.77-

0.95); DSC = 0.68 ± 0.20; FP/scan = 
1.90 (Dataset 4) 

a. Agreement of the response assessment in 

RANO-BM and volumetry (Dataset 2 & 3 & 

4) 

RANO-BM measurement: k (95% CI) = 0.52 

(0.26–0.79); volumetric measurement: k (95% 
CI) = 0.68 (0.41–0.94) 
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Hsu, et al.33 Dataset 1: 

1. Brain metastases 

2. Retrospective 

3. Single-site 

4. T1 C 

5. 20 patients 

 

Dataset 2: 

1. Brain metastases 

2. Retrospective 

3. Single-site 

4. T1 C 

5. train 409 patients with 1345 BMs; 
test 102 patients with 367 BMs 

 

Dataset 3: 

1. Brain metastases 

2. Retrospective 

3. Single-site 

4. T1 C 

5. 32 patients with 123 BMs 

1. BM registration 

2. BM segmentation 

3. BM tracking 

4. Calculation of GT Compared to 

change and the percent changes of 

and 3LD and ESD measurement 

 

 

Metastasis Tracking with 

Repeated Observations 3D 

CNN-based software 

compared to manual 

assessments for 

registration, segmentation, 

the changes of volume and 
diameters measurements 

a. The average shift across all points of 

registration 1.5 ± 0.2mm (95% CI) 

(Dataset 1)  

b. Segmentation performance (Dataset 
2 test) 

Sensitivity (95% CI) = 95% ± 3%; 

False positive rate (95% CI) = 2.4 ± 

0.5 per patient; DSC (95% CI) = 0.76 
± 0.03 

a. Detection rate of new or unirradiated BMs 
72% (Dataset 3)  

b. Correlation of size responses R² = 0.80 

(Dataset 3) 

c. Pearson correlation coefficient for size 

changes of non-disappeared lesions was 0.88 

for 3LD (3-dimensional longest diameter) and 

0.86 for ESD (equivalent spherical diameter), 
with p < 0.001 (Dataset 3) 
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Kleesiek, et 
al.34 

Dataset 1 longitudinal data: 

1. Grade IV glioma (glioblastoma) (pre 
2021 WHO classification) 

2. Retrospective 

3. Single-site 

4. T1, T1 C, T2, FLAIR 

5. 15 patients with 71 MRIs 

 

Dataset 2 Brain Tumor Segmentation 
Challenge 2013: 

1. Grade II–IV gliomas (pre 2021 

WHO classification) 

2. Retrospective 

3. Multisite 

4. T1, T1 C, T2, FLAIR 

5. 30 MRIs 

1. Preprocessing for dataset 1 

a. N3 bias field correction 

b. Resampling 

c. Longitudinal registration 

d. Skull-stripping 

e. Brain mask generation  

f. Intra-individual registration 

g. Brain mask application 

2. Preprocessing for dataset 2 

a. N3 bias field correction 

b. Normalization  

3. Preprocessing for both datasets 

a. T1 Subtraction 

b. Feature Extraction 

4. Volumetry segmentation 

5. Volumetric assessment 

classification 

Random forest-based 

segmentation and 

volumetric measurements 

compared to manual 

volumetric and RANO in 

20106 measurements 

a. GTV segmentation  

DSC = 0.636 (Dataset 1) 

DSC = 0.963 (Dataset 2) 

 

a. The change of GTV with the virtual raters 
correlation r = 0.995, p < 0.0001 (Dataset 1) 

Ozkara, et al.35 Dataset 1 Longitudinal Dataset: 

1. Brain metastases 

2. Retrospective 

3. Single-site 

4. T1 C 

5. 180 patients 

1. Tumor segmentation by DL-
based algorithm 

2. Calculation of volume and 

longest diameters change 

measurement by thresholding 
functions 

Automation ML-based 

software Jazz for 

segmentation and 

volumetric assessment 

compared to manual 

measurement based on 

RANO-BM7 (the change of 

longest diameter and 
volume) 

N/A a. The agreement of volume changes 
measurement (Dataset 1) 

ICC = 0.98 (95% CI, 0.97-0.98) 
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Suter, et al. 
202336 

Dataset 1 LUMERE post-operative 
Dataset: 

1. Grade IV glioma (glioblastoma) (pre 

2021 WHO classification) 

2. Retrospective 

3. Single-site 

4. T1, T1 C, T2, FLAIR 

5. 80 patients with 502 MRIs  

 

Dataset 2 Scans identified from Dataset 

1 containing target lesions: 

129 MRIs 

1. Preprocessing 

a. Resampling 

b. Skull-stripping  

2. Segmentation 

3. Automated 2D measurement (the 

product of longest perpendicular 

diameters in the axial space) 

4. Automated volumetry 

(quantifying the contrast 

enhancement volume by counting 

the voxels of the segmentation 

label) 

5. Automated 2.5D measurement 

(the product of the longest 
diameters in the tumor 3D space.) 

6. Classification of treatment 
response 

7. Calculation of TTP 

 

 

DL-based BraTumIA 

software and HD-GLIO 

compared to manual 

assessments for 

segmentation, modified 

RANO8 measurements, 

classification and TTP 
calculation 

N/A 

 

a. Agreement of 2D measurements with 
manual measurements (Dataset 2) 

HD-GLIO: 0.81, BraTumIA: 0.80 

Zhang, et al.37  Dataset 1 Longitudinal dataset:  

1.Glioblastoma (pre 2021 WHO 

classification)  

2. Retrospective 

3. Single-site 

4. T1, T1 C, T2, FLAIR 

5. 634 patients with 3403 MRIs 

 

1. Preprocessing 

a. Field-of-View Standardization 

b. Skull-stripping  

2. Segmentation 

3. Volumetric measurements 

4. BT-RADS classification 

 

 

 

nnU-Net based 

segmentation to manual 

segmention and volumetric 

assessments compared to 

volumetric assessments 

based on BT-RADS 
(volume) 

a. Mean ± SD = 0.8861 ± 0.2476 for 

enhancing tumor and 0.9833 ± 0.0372 

for surrounding non-enhancing FLAIR 

signal abnormality (Dataset 1 internal 

validation test) 

a. The agreement across BT-RADS (F1: 

0.587-0.755) (Dataset 1 internal test) 

b. Kaplan-Meier Survival Analysis: Worse 

survival for human-assessed progression vs. 

AI (Log-rank P=0.007) (Dataset 1 internal 
test)   

c. Cox Proportional Hazard Model Analysis: 

AI assessments less accurate for survival 
prediction (P=0.012) (Dataset 1 internal test) 
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Prezelski, et 
al.38  

Dataset 1 Longitudinal dataset:  

1.Brain metastases 

2. Retrospective 

3. Single-site 

4. T1 

5. 71 patients with 176 BMs, 629 MRIs 

1. BM detection 

2. Segmentation 

3. Rigid registration 

3. BM volume and longest 3D 
diameter changes caculation  

4. BM classification 

Metastasis Tracking with 

Repeated Observations 3D 

CNN-based software 

compared to manual 

assessments for detection, 

segmentation, the 

caculation of volume and 

longest 3D diameter 

changes and classification 

based on RANO-BM7 

a. BM Detection (Dataset 1) 

Sensitivity: Nearly 100% for larger 

lesions, drops below 90% for lesions 

smaller than 5 mm 

a. BM Volume and Longest 3D Diameter 
Changes Calculation (Dataset 1) 

Correlation Coefficient (R2): 0.76 (P = .0001)  

Comparison between Manual and METRO 

Measurements: METRO's longest 3D diameter 

is generally longer than the manual axial 
diameter  

b. BM Classification (Dataset 1) 

Sensitivity: 0.72  

Specificity: 0.95  

Precision: 0.81 (Increasing), 0.32 (Stable), 
0.36 (Decreasing), 0.66 (Unappreciable) 

Recall: 0.72 (Increasing), 0.55 (Stable), 0.22 

(Decreasing), 0.72 (Unappreciable)  

Specificity: 0.95 (Increasing), 0.82 (Stable), 
0.85 (Decreasing), 0.77 (Unappreciable)  

F1-score: 0.76 (Increasing), 0.40 (Stable), 0.27 
(Decreasing), 0.69 (Unappreciable) 

Son, et al.39  Dataset 1 Segmentation dataset:  

1. Brain metastases 

2. Retrospective 

3. Single-site 

4. T1, T1 C, T2, FLAIR, BB T1 

5. 128 patients with 1339 BMs 

 

Dataset 2 Treatment response dataset:  

1. Brain metastases 

2. Retrospective 

3. Single-site 

4. T1, T1 C, T2, FLAIR, BB T1 

5. 58 patients with 629 BMs 

1. Skull-stripping 

2. BM detection 

3. BM segmentation 

4. Volumetric changes caculation 

4. RANO-BM7 classification 

RLK-UNet based 

architecture compared to 

manual assessments for 

detection, segmentation, 

volume changes changes 

and classification based on 
RANO-BM7 

a. Detection Performance: (Dataset 1) 

Sensitivity: 86.9%  

Precision: 79.6%  

False Positives per Scan: 1.76  

b. Segmentation Performance: 
(Dataset 2) 

All BMs (DSC): 0.663  

Large BMs (DSC): 0.851 

Small BMs (DSC): 0.535  

Pearson Correlation Coefficient: 0.96  

Bland-Altman Analysis: Mean 
difference of 0.01 cm³ 

a. Agreement on treatment response 
assessment: (Dataset 2) 

ICC: 0.84 (95% CI: 0.75-0.91) 

b. Agreement in Response Assessment: 87.9% 

(51/58 patients)  

Overestimation of Treatment Response: 6.8% 
(4/58 patients)  

Underestimation of Treatment Response: 
5.1% (3/58 patients) 
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Kotowski, et 
al.40  

Dataset 1 BraTS2021 training dataset:  

1. Glioblastoma (pre 2021 WHO 
classification)  

2. Retrospective 

3. Multisite 

4. T1, T1 C, T2, FLAIR 

5. 1251 patients with 1251 MRIs 

 

Dataset 2 Brain Tumor Progression 
dataset:  

1. Glioblastoma (pre 2021 WHO 

classification)  

2. Retrospective 

3. Multisite 

4. T1, T1 C, T2, FLAIR 

5. 20 patients with 40 MRIs 

1. Preprocessing by CaPTK 

a. Reorientation 

b. Resampling 

c. Denoising 

d. Bias correction 

e. Co-registration 

2. Skull-stripping 

3. Segmentation 

4. Bidimensional and volumetric 
measurements 

HD-BET 3D U-Net based 
brain extraction,  

nnU-Net segmentation, 

AutoRANO and 

volumetric measurement 

compared to manual 

measurement based on 
RANO 20106 

a. Segmentation DSC: (Dataset 2) 

DeepMedic: mean 0.72, median 0.77 
(95% CI: 0.66-0.79)  

HD-BET: mean 0.73, median 0.79 

(95% CI: 0.67-0.80)  

 

 

 

a. Bidimensional measurements spearman’s 
correlation coefficient: (Dataset 2) 

DeepMedic: 0.58 

HD-BET: 0.68 

b. Measurable ET Volume Correlation 

Coefficient: (Dataset 2) 

DeepMedic: 0.90 

HD-BET: 0.93 

c. Full ET Volume Correlation Coefficient: 

(Dataset 2) 

DeepMedic: 0.89 

HD-BET: 0.93 
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Hammer, et 
al.41  

Dataset 1 D-STUDIES dataset:  

1. Brain metastases 

2. Retrospective 

3. Single-site 

4. T1 C 

5. 226 patients 

 

Dataset 2: D-SCANS dataset (created 

from Dataset 1 for time-sequenced 
analysis and pairing creation) 

1. Brain metastases 

2. Retrospective 

3. Single-site 

4. T1 C 

5. 226 patients with 500 MRIs 

 

Dataset 3: D-SCAN-PAIRS dataset 

(created by pairing pre-SRS with post-

SRS scans) 

1. Brain metastases 

2. Retrospective 

3. Single-site 

4. T1 C 

5. 271 pairs of time-ordered MRI scans 

(train/validate 205 pairs from 169 
patients; test: 66 pairs from 57 patients) 

 

Dataset 4: D-LESIONS-GT dataset 
(Dataset 2 annotations) 

1. Brain metastases  

2. Retrospective 

3. Single-site 

4. 1,889 lesions annotated (From 439 

scans:1,571 lesions manually annotated 

1. Brain segmentation 

2. Registration 

3. Simultaneous lesion detection 
and segmentation 

4. Detection and classification of 

lesion changes 

5. Quantification 

SimU-Net based detection, 

segmentation, 

classification compared to 
manual measurements 

a. Lesion Detection (Dataset 3 test): 

(Lesions > 10 mm) 

Precision: 1.00 ± 0.00 

Recall: 1.00 ± 0.00 

 

(Lesions > 5 mm) 

Recall (all scenarios): 0.95–0.96 ± 
0.13–0.14 

Simultaneous without prior & 

Standalone pairs (Precision): 0.92–

0.93 ± 0.18–0.19 

Other scenarios (Precision): 0.86–0.89 
± 0.24–0.28 

 

(Lesions of All Sizes) 

Standalone scenarios (Recall): 0.82–
0.83 ± 0.28–0.29 

Other scenarios (Recall): ~0.80 ± 
0.28–0.31 

Simultaneous with prior (Precision): 

0.83 ± 0.24 

Other scenarios (Precision): 0.75–0.78 
± 0.26–0.28 

 

b. Lesion Segmentation (Dataset 3 
test) 

DSC: 0.80–0.90 ± 0.10–0.21 

ASSD: 0.27–0.62 ± 0.35–1.27 mm 

Simultaneous without prior: DSC 
0.83–0.90 ± 0.10–0.22 

a. Lesion Matching (Dataset 2) Precision and 
Recall: 1.00 ± 0.00 

b. Lesion Change Classification: (Dataset 2) 

Precision and Recall: 1.00 ± 0.00 
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by experts; From 61 scans: 318 lesions 
refined from SimU-Net predictions) 

 

Dataset 5: D-LESION-PAIRS-GT 

dataset (Dataset 3 annotations) 

1. Brain metastases  

2. Retrospective 

3. Single-site 

4. 2,055 lesions annotated: (Includes 

lesions from pre-SRS scan repetitions) 

WHO, 2021 (World Health Organization Classification of Tumors of the Central Nervous System in 2021)20. T1 = T1-weighted; T2 = T2-weighted; T1 C = Post Contrast T1-weighted; FLAIR = Fluid-Attenuated Inversion Recovery; DWI = 

Diffusion-Weighted Imaging; ADC = Apparent Diffusion Coefficient; RANO = Response Assessment in Neuro-Oncology; ICC = Intraclass Correlation Coefficient; ET = Enhancing tumor; ED = peritumoral edematous, infiltrated, or treatment-

changed tissue; NCR = necrotic core; TC = tumor core (AT+NCR); WT = whole tumor (ED+AT+NCR); HD95 = Hausdorff 95th Percentile Distance; TTP = Time to Progression; CCC = Concordance Correlation Coefficient; LGG = Low-Grade 

Glioma; SD = Standard Deviation; AUC = Area-under-the-curve; 25p–75p = 25% percentile–75% percentile; GT = ground truth; AUC = area under the curve; LF = Local Failure; LC = Local Control; SRS = Stereotactic Radiotherapy; ARE = 

Adverse Radiation Effect; PD = Progressive Disease; PR = Partial Response; SD = Stable Disease; RANO = Response Assessment in Neuro-oncology; RANO-BM = Response Assessment in Neuro-oncology-Brain Metastases; P = P-value; BMs = 

Brain metastases; CAD = Computer-Aided Detection; MD = Manual Detection; SSIM = Structural Similarity Index Measure; DL = Deep Learning; BraTS = Brain Tumor Segmentation Challenge; ANN = Artificial Neural Network; 3LD = 3D 

longest diameter; ESD = Equivalent Sphere Diameter; GTVs = Gross Tumor Volume; CI = Confidence Interval; DSC = Dice Similarity Coefficient; CaPTK = Cancer Imaging Phenomics Toolkit; ASSD = Average Symmetric Surface Distance 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/neuro-oncology/advance-article/doi/10.1093/neuonc/noaf037/8010105 by guest on 19 February 2025



 

Figure 1 
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Figure 2 
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