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Abstract
Background Intratumor heterogeneity (ITH) is a key biological characteristic of gliomas. This study aimed to 
characterize ITH in adult-type diffuse gliomas and assess the feasibility of using habitat imaging based on dynamic 
contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging (DWI) to preoperatively 
predict isocitrate dehydrogenase (IDH) genotypes and prognosis.

Methods Sixty-three adult-type diffuse gliomas with known IDH genotypes were enrolled. Volume transfer constant 
(Ktrans) and apparent diffusion coefficient (ADC) maps were acquired from DCE-MRI and DWI, respectively. After tumor 
segmentation, the k-means algorithm clustered Ktrans and ADC image voxels to generate spatial habitats and extract 
quantitative image features. Receiver operating characteristic (ROC) curves and area under the curve (AUC) were used 
to evaluate IDH predictive performance. Multivariable logistic regression models were constructed and validated 
using leave-one-out cross-validation, and the contrast-enhanced subgroup was analyzed independently. Kaplan-
Meier and Cox proportional hazards regression analyses were used to investigate the relationship between tumor 
habitats and progression-free survival (PFS) in the two IDH groups.

Results Three habitats were identified: Habitat 1 (hypo-vasopermeability and hyper-cellularity), Habitat 2 (hypo-
vasopermeability and hypo-cellularity), and Habitat 3 (hyper-vasopermeability). Compared to the IDH wild-type 
group, the IDH mutant group exhibited lower mean Ktrans values in Habitats 1 and 2 (both P < 0.001), higher volume 
(P < 0.05) and volume percentage (pVol, P < 0.01) of Habitat 2, and lower volume and pVol of Habitat 3 (both P < 0.001). 
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Background
Gliomas are the most prevalent and aggressive primary 
brain tumors in adults. Current treatment strategies 
face challenges due to intratumor heterogeneity (ITH), 
which plays a critical role in malignant progression and 
resistance to therapy [1, 2]. Gliomas exhibit complex spa-
tial variations in gene expression, histopathology, and 
microstructure, forming multiple independent habitats 
influenced by diverse microenvironmental pressures and 
cellular phenotypes [3, 4]. In adult-type diffuse gliomas, 
isocitrate dehydrogenase (IDH) gene mutation is associ-
ated with lower malignancy and a more favorable prog-
nosis [5]. Preoperative differentiation of IDH mutations 
is of great significance for prognostic assessment, person-
alized treatment planning, and clinical decision-making 
in patients [6]. Genetically, heterogeneity in IDH expres-
sion has been found to be correlated with variations in 
intratumor blood perfusion and vascular permeability [7, 
8]. Additionally, glioma malignancy is closely related to 
tumor cellularity, quantified by cell density and nuclear-
to-cytoplasmic ratio, which can also be reflected in the 
diffusion capacity of water molecules within the tumor 
tissue [9].

Although histological and molecular analyses are 
essential for glioma diagnosis, they are often limited 
by sampling bias and inaccuracies due to the failure to 
account for tumor spatial heterogeneity [10]. Moreover, 
repeated and multiple invasive sampling is not advis-
able. Tumor imaging analysis methods have been widely 
adopted to assess ITH. However, current mainstream 
methods, such as histogram analysis or radiomics, pre-
dominantly depend on global voxel features within auto-
matically or manually defined tumor volume of interest 
(VOI), failing to capture subregional characteristics and 
therefore inadequately characterizing ITH [4, 11–13]. 
There is a pressing need for non-invasive methods to 
accurately assess ITH and identify critical subregions 
within gliomas that could guide biopsy sampling or indi-
vidualized treatment.

Habitat imaging, an emerging imaging post-processing 
technique, has shown its potential in exploring tumor 

ITH in recent years. Previous research has highlighted 
the value of habitat imaging derived from single-modality 
or multiparametric magnetic resonance imaging (MRI) 
in investigating ITH in gliomas. Some studies have iden-
tified tumor vascular habitats based solely on dynamic 
susceptibility contrast perfusion-weighted imaging 
(DSC-PWI) in gliomas [14, 15]. Park et al. clustered 
image voxels using k-means from DSC-PWI and appar-
ent diffusion coefficient (ADC) to construct spatial 
habitats in glioblastoma, overcoming a limitation in the 
measurement of a single quantitative parameter [12, 16]. 
This data-driven, unsupervised algorithm does not rely 
on prior assumptions and remains unaffected by brain 
tissue normalization, disclosing more comprehensive 
potential [12, 17, 18].

Diffusion-weighted imaging (DWI) and dynamic con-
trast-enhanced (DCE)-PWI are useful MRI modalities for 
assessing glioma malignancy. DWI is more widely prac-
ticed in the diagnosis and monitoring of brain tumors. 
The ADC from DWI is a useful index reflecting the dif-
fusion capacity of water molecules, which is closely cor-
related with tumor cellularity [9]. Additionally, DCE-MRI 
has shown its potential in the diagnosis, monitoring, 
and prognosis of gliomas, primarily due to its ability to 
characterize glioma microvasculature [19, 20]. Notably, 
the volume transfer constant (Ktrans) derived from DCE-
PWI is strongly associated with the blood-brain barrier 
disruption in gliomas [20]. In this study, we hypothesized 
that spatial subregions, identified through a joint analy-
sis of cellularity and vasopermeability landscapes, could 
characterize ITH in gliomas. Therefore, the aim of this 
study was to assess the feasibility of using preoperative 
ITH information, derived from habitat imaging of Ktrans 
and ADC parametric maps, to predict IDH mutation sta-
tus and prognosis in adult-type diffuse gliomas.

Methods
Patients
This retrospective study was based on a database of 115 
consecutive patients with gliomas who were admitted to 
our hospital between September 2021 and January 2024, 

The optimal logistic regression model for IDH prediction yielded an AUC of 0.940 (95% confidence interval [CI]: 
0.880–1.000), which improved to 0.948 (95% CI: 0.890–1.000) after cross-validation. Habitat 2 contributed the most to 
the model, consistent with the findings in the contrast-enhanced subgroup. In IDH wild-type group, pVol of Habitat 2 
was identified as a significant risk factor for PFS (high- vs. low-pVol subgroup, hazard ratio = 2.204, 95% CI: 1.061–4.580, 
P = 0.034), with a value below 0.26 indicating a 5-month median survival benefit.

Conclusions Habitat imaging employing DCE-MRI and DWI may facilitate the characterization of ITH in adult-type 
diffuse gliomas and serve as a valuable adjunct in the preoperative prediction of IDH genotypes and prognosis.

Clinical trial number Not applicable.

Keywords Adult-type diffuse glioma, Intratumor heterogeneity, Isocitrate dehydrogenase, Progression-free survival, 
Dynamic contrast-enhanced perfusion, Diffusion-weighted imaging
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with data collected as part of routine clinical care. The 
study protocol was approved by the local institutional 
review board and the requirement for informed con-
sent from patients was waived. According to the criteria 
below, this study enrolled 63 patients with adult-type 
diffuse gliomas who (1) underwent pre-treatment MR 
examination including DCE-MRI, with an interval of 
no more than 10 days; (2) had pathologically confirmed 
gliomas with results of IDH-1/2 genotype by molecu-
lar sequencing; (3) without treatment history before 
MR scanning, including surgery, radiotherapy, or che-
motherapy; (4) with no artifacts of MRI images. Of the 
all patients, 52 did not meet the inclusion criteria and 
were excluded: 25 patients had no DCE images or poor-
quality imaging data, 12 with a history of treatment, 10 
with unknown IDH mutation status because of incom-
plete molecular or immunohistochemical detection, and 
5 were under 18 years of age. Figure 1 shows the patient 
inclusion process.

Histopathologic analysis and survival evaluation
According to the 2021 WHO classification of central ner-
vous system (CNS) tumors [1], all IDH mutant diffuse 
astrocytomas and oligodendrogliomas were considered 
IDH mutant gliomas, while glioblastomas with wild-type 
IDH gene were classified as IDH wild-type gliomas. The 
IDH1 and IDH2 genotypes at the hotspot codons R132 
and R172 were determined using the Sanger dideoxy 
DNA sequencing method. Mutations in either IDH1 or 

IDH2 were classified as belonging to the IDH mutant 
group.

We obtained the patients’ progression-free survival 
(PFS) data from the medical records system, MRI images, 
and follow-up information. PFS is defined as the time 
from the patient’s initiation of treatment to tumor pro-
gression. Tumor progression on MRI was assessed using 
the Response Assessment in Neuro-Oncology (RANO) 
2.0 criteria [21]. In the newly diagnosed setting, the 
post-radiotherapy MRI was used as the baseline for com-
parison with subsequent follow-up scans. The primary 
measurement was the maximum cross-sectional area of 
the tumor under stable or increasing doses of corticoste-
roids, with progression defined as either a 25% increase 
in the size of the lesions or the appearance of a new mea-
surable lesion; definite clinical deterioration not attribut-
able to causes other than the tumor, or failure to return 
for evaluation due to deteriorating condition was also 
considered as progression [22]. All patients were fol-
lowed up until progression or the study cutoff (January 
2025).

MR image acquisition
MRI acquisition protocol was performed on a 3-T scan-
ner (MAGNETOM Prisma, Siemens Healthcare) with 
a 20-channel-array head coil. All MRI examinations 
included unenhanced and gadolinium-based contrast-
enhanced (CE) T1-weighted imaging (T1WI), fast 
spin-echo T2-weighted imaging (T2WI), T2-weighted 

Fig. 1 Flow diagram of the patient inclusion process. DCE, dynamic contrast-enhanced; IDH, isocitrate dehydrogenase; T1WI, T1-weighted imaging
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fluid-attenuated inversion recovery (FLAIR), DWI, and 
DCE-PWI. For DWI, we performed a single shot echo-
planar sequence in the axial plane with diffusion gradi-
ent encoding of b = 0 and 1000 s/mm2. DCE-MRI images 
were obtained with a three-dimensional gradient-echo 
T1-weighted sequence. A bolus injection of 0.1 mmol/kg 
gadobutrol (Gadovist, 15 ml: 9.0708 g, Bayer) was admin-
istered at 2  ml/second by an MRI-compatible power 
injector (no pre-bolus administration) during the DCE 
scanning. The injection was initiated at the third phase 
of the scanning sequence and followed by injecting 15 ml 
saline at the same injection rate. A total of 30 phases and 
840 DCE images were captured with a scanning time 
of 4  min 42  s. All images were captured with complete 
tumor volume coverage and the same slice orientation. 
The parameters for all scanning sequences are provided 
in Supplementary Table 1.

Parametric map reconstruction of Ktrans and ADC
A pharmacokinetic analysis post-processing platform 
with dedicated software (Tissue-4D, Siemens Health-
ineers) was used to generate DCE parametric maps. The 
Ktrans maps of each patient were calculated by means of 
the standard Tofts pharmacokinetic model [23].

ADC images were computed from diffusion gradient 
encoding of b values of 0 and 1000 s/mm2 on DWI.

VOI delineation
All VOIs were manually delineated using 3D Slicer soft-
ware (version 5.4.0, https://www.slicer.org/; National 
Institutes of Health, USA) [24]. Before delineation, all 
image sequences underwent registration and resample 
referring to T2-FLAIR for normalization to ensure con-
sistent resolution, spacing, and alignment. Tumor seg-
mentation was performed on T2-FLAIR images, and 
T1WI, T2WI, and CE-T1WI images were consulted to 
guide VOI delineation. All VOIs covered the tumor solid 
tissue, excluding peritumoral edema, necrosis, cysts, 
and obvious non-tumor macro-vessels. The solid tumor 
area was defined by the T2-FLAIR high-signal area, and 
the non-enhanced or mildly enhanced tumor area was 
determined by the high signal boundary on T2WI [25]; 
any areas that were ambiguously localized or difficult to 
determine were excluded. Two radiologists (ZHX and 
XQW, each with 8 years of experience in neuroimaging) 
performed the VOI delineation by consensus under the 
supervision of a senior radiologist (MQC, with 15 years 
of neuroimaging experience in CNS tumors). None of the 
radiologists were aware of the histopathologic results.

Multiparametric spatial habitats and quantitative image 
features
We applied a cohort-based k-means algorithm to clus-
ter image voxels within each tumor VOI into three 

subregions and extracted quantitative image features 
from Ktrans and ADC maps using FeAture Explorer soft-
ware (FAE, version 0.5.12, Shanghai Key Laboratory of 
Magnetic Resonance;  h t t p  s : /  / g i t  h u  b . c  o m /  s a l a  n 6  6 8 / F A 
E . g i t) [26]. A cluster number of 3 was chosen, as it was 
the lowest number of clusters to show differences among 
the imaging parameters, and the lowest number was pre-
ferred to avoid over-parameterization of models [16]. 
Hence, three clusters representing respective habitats in 
each tumor were finalized (Supplementary Fig.  1): clus-
ter 1 represented “hypo-vasopermeability and hyper-
cellularity habitat” (Habitat 1) with low Ktrans and ADC 
value; cluster 2 represented “hypo-vasopermeability and 
hypo-cellularity habitat” (Habitat 2) with low Ktrans and 
high ADC value; cluster 3 represented “hyper-vasoper-
meability habitat” (Habitat 3) with high Ktrans value. The 
quantitative image features included the mean Ktrans 
(Ktrans_Mean) and mean ADC (ADC_Mean) values in 
each habitat, as well as the volume and volume percent-
age (pVol) of each habitat within tumor VOIs. For com-
parison, the mean Ktran and ADC values within the tumor 
VOIs were extracted independently.

Morphological assessment
Morphological assessment of image features was inde-
pendently performed by two radiologists (ZHX and 
XQW, each with 8 years of experience in neuroimaging), 
who were both blinded to the diagnosis and the patients’ 
clinical information. Morphological readings were com-
pleted at a separate time (exceeding 4 weeks later than 
VOI delineation). We selected morphological features 
that were frequently-used in clinical tumor evaluation, 
including tumor location, hemorrhage, necrosis, cyst or 
cysts, edema, and enhancement category [27]. Tumor 
location was specified by the geographic epicenter of the 
lesion. Hemorrhage was defined as any intrinsic focus of 
high signal on T1WI or low signal on T2WI. Unenhanced 
areas within the tumor body that were patchy or irregular 
in shape with T2WI hyperintensity and T1WI hypoin-
tensity were regarded as necrosis. Cystic regions where 
the signal was equivalent to that of cerebrospinal fluid, 
with marginal enhancement not significant or absent, 
were considered the presence of cyst or cysts. Edema 
was defined as the area of T2 hyperintensity around the 
tumor when the solid boundary of the tumor was clear. 
If the solid tumor and edema could not be distinguished, 
the T2 hyperintense areas closer to the adjacent brain tis-
sue and showing hyperintensity on the ADC map were 
considered edema. The minimum distance from the solid 
tumor to the adjacent white matter was evaluated in 
the peritumoral edema region, with a threshold of 1 cm 
selected referring to previous studies [28]. Contrast agent 
uptake was categorized into patchy or ringlike, or non/
mildly enhanced [27].

https://www.slicer.org/
https://github.com/salan668/FAE.git
https://github.com/salan668/FAE.git
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To validate the performance of subsequent habitat pre-
dictive models in differentiating IDH mutation status in 
obviously enhanced adult-type diffuse gliomas on CE-
T1WI, we independently investigated the enhanced sub-
group (Fig. 1), excluding all non/mildly enhanced tumors, 
using the same methodology for supplementary results.

Statistical analysis
Statistical analyses were performed using SPSS (version 
26, IBM), MedCalc (version 22.001, MedCalc Software 
Ltd.), and R (version 4.3.3, R Foundation). Quantitative 
variables were reported as mean ± standard deviation 
(SD), and categorical variables as percentages. All tests 
were two-tailed with a default alpha level of 0.05.

The interobserver agreement for morphological assess-
ment of image features between the two radiologists 
was evaluated using Cohen’s kappa test. The Student’s 
t-test or Mann-Whitney U-test compared habitat fea-
ture differences between IDH mutant and wild-type 
groups. IDH predictive performance was evaluated using 
receiver operating characteristic (ROC) curves and area 
under the curve (AUC). Logistic regression models, 

incorporating preoperative clinical and imaging features 
alongside habitat or tumor VOI features, were developed 
to predict IDH genotypes. After checking multicollinear-
ity, variables with a P value < 0.05 in univariable logistic 
regression and a variance inflation factor (VIF) < 5 were 
included in multivariable logistic regression models using 
stepwise method. Model comparisons were performed 
using the DeLong test, and model fit was assessed by the 
Hosmer-Lemeshow test. The leave-one-out cross-valida-
tion was used to assess the diagnostic efficacy and stabil-
ity of models.

To further investigate the prognostic value of tumor 
habitats, we separately divided IDH mutant and wild-
type gliomas into two subgroups using the median of 
each habitat feature. Kaplan-Meier analysis was per-
formed to identify habitat features associated with PFS, 
and log-rank tests were used to assess the significance. 
Cox proportional hazards regression was conducted to 
calculate the hazard ratio (HR) and its 95% confidence 
interval (CI) for paired subgroups.

Results
Patient characteristics
The demographic, clinical, and pathological charac-
teristics of the patients enrolled in this study are sum-
marized in Table  1. The age in the IDH mutant group 
was significantly lower than that of the wild-type group 
(P < 0.001). In our dataset, 7 cases were WHO grade II 
gliomas, while the remaining cases were high-grade glio-
mas (WHO grade III-IV, accounting for 88.89%). There 
was no statistically significant difference in gender and 
tumor size between the two IDH groups (P = 0.562 and 
0.460, respectively). The median follow-up time was 8.0 
months (interquartile range: 3.0–13.0 months). During 
the follow-up period, 39 patients experienced PFS events, 
including 6 patients in the IDH mutant group and 33 
patients in the IDH wild-type group.

Morphological features
For tumor location, the agreement between the two 
observers was good (κ = 0.83, P < 0.01). The IDH mutant 
gliomas were more likely to occur in the frontal lobe 
than the wild-type (P = 0.003), and the latter occurred 
relatively randomly in different brain regions. There was 
significant statistical difference in the incidence of necro-
sis between the two IDH genotypes (P = 0.012). In the 
IDH mutant group, 13 cases (59.1%) exhibited obvious 
enhancement on CE-T1WI, as did 38 cases (92.7%) in the 
IDH wild-type group. A ringlike enhancement mode was 
more common in the wild-type group (P = 0.003). The 
kappa value for the agreement of necrosis and enhance-
ment pattern judgment between the two evaluators 
was 0.84 (P < 0.01) and 0.91 (P < 0.001). The agreement 
between the two evaluators regarding the assessment of 

Table 1 Demographic, clinical, and morphological 
characteristics of patients
Characteristics IDH mutant

(n = 22)
IDH wild-type
(n = 41)

P 
value

Sex, n
 Male/female 14/8 23/18 0.562
Age, years
 Mean ± SD (range) 44.9 ± 14.0 

(24–72)
61.2 ± 13.5 
(28–85)

0.000*

WHO Grade, n (%) 0.000*

 II 7 (31.82%) 0 (0%)
 III 7 (31.82%) 0 (0%)
 IV 8 (36.36%) 41 (100%)
Tumor size, cm3

 Mean ± SD 48.44 ± 37.64 42.72 ± 23.54 0.460
Tumor location, n (%)
 Frontal 15 (68.18%) 12 (29.27%) 0.003*

 Parietal or occipital 1 (4.54%) 9 (21.95%) 0.145
 Temporal or insular 5 (22.73%) 12 (29.27%) 0.767
 Other 1 (4.54%) 8 (19.51%) 0.144
Hemorrhage, n (%) 7 (31.82%) 16 (39.02%) 0.571
Necrosis, n (%) 9 (40.91%) 30 (73.17%) 0.012*

Cyst or cysts, n (%) 14 (63.64%) 22 (53.66%) 0.446
Edema (> 1 cm), n (%) 9 (40.91%) 25 (60.98%) 0.128
Enhancement category, n (%)
 Patchy enhancement 6 (27.27%) 9 (21.95%) 0.636
 Ringlike enhancement 7 (31.82%) 29 (70.73%) 0.003*

 No/mild enhancement 9 (40.91%) 3 (7.32%) 0.002*

Follow-up time, months
 Median (IQR) 12.0 (7.8–15.0) 6.0 (2.0–10.0) 0.013*

Values are presented as number (%), mean ± SD, or median (IQR). IDH, isocitrate 
dehydrogenase; SD, standard deviation; IQR, interquartile range. *Represented 
a statistical difference (P < 0.05)
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hemorrhage, cyst(s), and edema was good (κ = 0.93, 0.89, 
and 0.88, respectively, all P < 0.001), and no significant 
differences in these features were found between the two 
IDH genotypes (all P > 0.05).

Habitat features according to IDH mutation status
After clustering ADC and Ktrans image voxels within the 
tumor VOI, the three spatial habitats in all gliomas were 
segmented and labeled with different colors. Figure  2 
illustrates the segmented slices in two patients with IDH 
mutant and wild-type gliomas, respectively.

The statistical results of the quantitative image fea-
tures for the two IDH genotypes are presented in Table 2. 
There were significant differences (all P < 0.001) in the 
mean Ktrans values between IDH mutant and wild-type 
patients in Habitats 1, 2, and the tumor VOI, with lower 
values observed in the IDH mutant group. No differ-
ences were found in the mean ADC values of the three 
habitats or tumor VOI between the two IDH genotypes 
(all P > 0.05). Compared with the IDH wild-type, the vol-
ume and the pVol of Habitat 2 were higher (P < 0.05 and 
P < 0.01, respectively), as those of Habitat 3 were lower 
(both P < 0.001) in IDH mutant gliomas. There was no 
significant difference in the volume and pVol of Habitat 1 
between the two IDH genotype groups (P > 0.05).

Diagnostic performance of habitat features
ROC curves of all image features with an AUC value 
exceeding 0.7 are shown in Fig. 3. The mean Ktrans value 
in Habitats 1, 2, and the tumor VOI had a good ability 
to discriminate IDH mutant glioma from its wild-type 
counterpart (AUC = 0.827, 0.825, and 0.810, all P < 0.001). 
Additionally, the pVol of Habitats 2 and 3, as well as the 
volume of Habitat 3, could also distinguish IDH mutation 
from the wild type (AUC = 0.718, 0.805, 0.756, respec-
tively; all P < 0.01).

Multivariable logistic regression analysis in entire cohort 
and contrast-enhanced subgroup
We first established a multivariable logistic regression 
model (model CM) based on clinical data and morpho-
logical features. The final significant variables included 
age, frontal location, and ringlike enhancement. Model 
CM attained an AUC value of 0.860 for IDH prediction. 
Subsequently, multivariable logistic regression analy-
ses incorporating quantitative image features, clinical 
data, and morphological features were performed. Five 
comprehensive IDH predictive models (models TV, H1, 
H2, H3, and AHs based on tumor VOI, Habitats 1, 2, 
and 3, and all habitats, respectively) were constructed 
(Table  3). The Hosmer-Lemeshow test confirmed good 
fit for each model (all P > 0.05). The ROC curves of the 

Fig. 2 Demonstration of habitat segmentation slices in two patients with IDH mutant and wild-type gliomas. Spatial habitats are labeled with different 
colors. Contrast-enhanced T1-weighted imaging shows (A) a non-enhanced IDH mutant glioma, (B) an obviously enhanced IDH mutant glioma, (C) an 
obviously enhanced IDH wild-type glioma, and (D) a mildly enhanced IDH wild-type glioma
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five models predicting IDH genotypes are presented 
in Fig.  4A. Among these, model AHs, as well as model 
H2, demonstrated the best performance, achieving an 
AUC of 0.940 (95% CI: 0.880-1.000, P < 0.001; sensitivity: 
86.4%; specificity: 92.7%; see Table 4 for details).

In the multivariable logistic regression analysis of 
model AHs, age (odds ratio [OR]: 0.918, 95% CI: 0.867–
0.972, P = 0.004), Ktrans_Mean in Habitat 2 (OR: 0.945, 
95% CI: 0.907–0.984, P = 0.006), and pVol of Habitat 2 
(OR:1.074, 95% CI: 1.020–1.131, P = 0.007) were identi-
fied as significant predictors of IDH mutation status. 
The Delong test indicated that the AUC of model AHs 
was significantly higher than those of the other models 
(all P < 0.05), except for model H2. Leave-one-out cross-
validation of both model AHs (cvAHs) and model H2 
(cvH2) showed superior performance (AUC for model 
cvAHs: 0.948, 95% CI: 0.890-1.000, P < 0.001; AUC for 
model cvH2: 0.935, 95% CI: 0.864-1.000, P < 0.001; shown 
in Supplementary Fig. 2).

The contrast-enhanced subgroup, as shown in Fig.  1, 
included 51 patients (13 IDH mutant gliomas and 38 IDH 

wild-type gliomas) with obviously enhanced tumors on 
CE-T1WI. Statistical results of quantitative image fea-
tures for this subgroup are in Supplementary Table 2, 
while the univariable and multivariable logistic regres-
sion analyses are summarized in Supplementary Table 3. 
Among the multivariable logistic regression models, both 
models AHs and H2 demonstrated better performance 
in IDH genotype prediction, with a consistent AUC of 
0.935 for both (95% CI: 0.862-1.000, P < 0.001; sensitivity: 
76.9%; specificity: 97.4%; as shown in Table  4; Fig.  4B). 
Significant variables in these two models for IDH pre-
diction remained age (OR: 0.924, 95% CI: 0.866–0.985, 
P = 0.015), Ktrans_Mean in Habitat 2 (OR: 0.953, 95% CI: 
0.911–0.998, P = 0.040) and pVol (OR: 1.113, 95% CI: 
1.013–1.223, P = 0.026) of Habitat 2.

Prognostic value of tumor habitats
In the IDH wild-type group, the PFS of the subgroup 
with high ADC_Mean in Habitat 2 was significantly 
shorter than that of the low-ADC_Mean subgroup in the 
same habitat (P = 0.028); patients with lower volume and 
pVol of Habitat 2 showed longer PFS (P = 0.020 and 0.023, 
respectively). Multivariate Cox regression revealed that 
only pVol_Habitat 2 was a significant risk factor for PFS 
(high- vs. low-pVol subgroup, HR = 2.204, 95% CI: 1.061–
4.580, P = 0.034). The median PFS in the high-pVol_Habi-
tat 2 (> 0.26) subgroup was 5 months shorter than that in 
the low-pVol_Habitat 2 (< 0.26) subgroup. Figure 5 shows 
the Kaplan-Meier curves for patient subgroups based 
on all quantitative metrics of Habitat 2. No significant 
PFS differences were found between paired subgroups 
for other habitat features in the IDH wild-type group or 
for any habitat features in the IDH mutant group when 
divided by median values (all P > 0.05, presented in Sup-
plementary Fig. 3).

Discussion
In this study, we constructed three spatial habitats for 
adult-type diffuse gliomas using a voxel clustering algo-
rithm based on DWI and DCE-MRI. Features from 
these habitats, which characterize various intratumor 
cellularity and vasopermeability, showed significant dif-
ferences between IDH mutant and wild-type gliomas. 
Multivariable logistic regression models using these fea-
tures demonstrated high predictive performance for IDH 
genotypes. Habitat features also have prognostic value 
in IDH wild-type patients. These findings suggest that 
our habitat analysis method may provide a more precise 
delineation of subregions most relevant to tumor cellu-
larity and vasopermeability in adult-type diffuse gliomas.

Intratumor molecular heterogeneity in malignant glio-
mas has been demonstrated in spatial transcriptome and 
other high-throughput sequencing research [10, 29]. On 
the issue of preoperatively quantifying spatial complexity 

Table 2 Habitat features and tumor VOI-based features in two 
IDH genotype groups
Features IDH mutant

(n = 22)
IDH wild-type
(n = 41)

P 
value

Habitat 1
 ADC_Mean, ×10− 6 
mm2/s

1022.28 ± 91.22 995.98 ± 98.94 0.306

 Ktrans_Mean, ×10− 3 
min− 1

34.27 ± 18.24 57.94 ± 18.08 0.000*

 Volume, mm3 26.00 ± 23.21 25.04 ± 18.26 0.858
 pVol (%) 52.54 ± 21.44 57.83 ± 22.05 0.363
Habitat 2
 ADC_Mean, ×10− 6 
mm2/s

1548.02 ± 79.80 1584.16 ± 116.41 0.199

 Ktrans_Mean, ×10− 3 
min− 1

33.03 ± 20.48 57.01 ± 17.10 0.000*

 Volume, mm3 20.77 ± 18.80 11.66 ± 10.54 0.045*

 pVol (%) 43.57 ± 19.86 28.11 ± 18.51 0.003*

Habitat 3
 ADC_Mean, ×10− 6 
mm2/s

1194.42 ± 171.81 1163.91 ± 145.55 0.459

 Ktrans_Mean, ×10− 3 
min− 1

195.01 ± 27.56 199.59 ± 33.05 0.581

 Volume, mm3 1.68 ± 2.80 6.01 ± 5.48 0.000*

 pVol (%) 3.89 ± 4.77 14.06 ± 11.72 0.000*

Tumor VOI
 ADC_Mean, ×10− 6 
mm2/s

1256.31 ± 168.44 1175.42 ± 182.62 0.090

 Ktrans_Mean, ×10− 3 
min− 1

39.94 ± 24.25 77.59 ± 32.89 0.000*

 Volume, mm3 48.44 ± 37.64 42.72 ± 23.54 0.460
Values are presented as mean ± SD. VOI, volume of interest; IDH, isocitrate 
dehydrogenase; ADC, apparent diffusion coefficient; Ktrans, volume transfer 
constant; pVol, volume percentage. *Represented a statistical difference 
(P < 0.05)
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and heterogeneity, spatially explicit habitat analysis meth-
ods have shown its potential [18, 30]. In our attempts, we 
identified three spatially distinct subregions, defined by 
k-means clustering of voxel-wise ADC and Ktrans para-
metric maps: Habitat 1 represents areas with low vascu-
lar permeability and high cellularity, where tumors may 
be relatively dense cell populations adapting to hypoper-
fusion microcirculation conditions; Habitat 2 represents 

areas with low vascular permeability and cellularity, likely 
indicating low-activity or severe-hypoxia tumor regions 
[7, 18, 31, 32]; Habitat 3 represents areas with high vascu-
lar permeability, likely corresponding to highly-vascular-
ized tumors with hyper malignancy

Our results showed that the mean Ktrans value in 
IDH wild-type gliomas was higher than in the mutant 
type within hypo-vasopermeability habitats (Habitats 

Fig. 3 Receiver operating characteristic (ROC) curves of habitat features and tumor volume of interest (VOI)-based features with an area under the ROC 
curve (AUC) value exceeding 0.7 in discriminating IDH genotypes. Features include Ktrans_Mean (AUC: 0.827, 95% CI: 0.726–0.929, P < 0.001) in Habitat 
1, Ktrans_Mean (AUC:0.825, 95% CI:0.721–0.929, P < 0.001) and pVol (AUC: 0.718, 95% CI: 0.589–0.848, P = 0.005) of Habitat 2, Volume (AUC: 0.756, 95% CI: 
0.634–0.878, P = 0.001) and pVol (AUC: 0.805, 95% CI: 0.696–0.914, P < 0.001) of Habitat 3, and Ktrans_Mean (AUC: 0.810, 95% CI: 0.703–0.918, P < 0.001) in 
tumor VOI. Ktrans = Ktrans
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Variable Univariable Multivariable
OR (95% CI) P value VIF* OR (95% CI) P value

Model CM
 Age 0.924 (0.885, 0.965) 0.000 1.228 0.934 (0.891, 0.980) 0.005
 Frontal location 5.179 (1.687, 15.893) 0.004 1.104 5.441 (1.313, 22.548) 0.020
 Necrosis 0.254 (0.085, 0.759) 0.014 1.284
 Ringlike enhancement 0.193 (0.063, 0.593) 0.004 1.619 0.172 (0.041, 0.717) 0.016
 No/mild enhancement 8.769 (2.056, 37.402) 0.003 1.633
Model TV
 Age 0.924 (0.885, 0.965) 0.000 1.235 0.929 (0.884, 0.975) 0.003
 Frontal location 5.179 (1.687, 15.893) 0.004 1.477
 Necrosis 0.254 (0.085, 0.759) 0.014 1.287
 Ringlike enhancement 0.193 (0.063, 0.593) 0.004 1.930
 No/mild enhancement 8.769 (2.056, 37.402) 0.003 1.638
 ADC_Mean 1.003 (1.000, 1.006) 0.094
 Ktrans_Mean 0.956 (0.933. 0.980) 0.000 1.809 0.956 (0.930, 0.983) 0.002
 Volume 1.007 (0.989, 1.025) 0.455
Model H1
 Age 0.924 (0.885, 0.965) 0.000 1.233 0.931 (0.887, 0.978) 0.004
 Frontal location 5.179 (1.687, 15.893) 0.004 1.345
 Necrosis 0.254 (0.085, 0.759) 0.014 1.285 0.259 (0.059, 1.139) 0.074
 Ringlike enhancement 0.193 (0.063, 0.593) 0.004 1.807
 No/mild enhancement 8.769 (2.056, 37.402) 0.003 1.665
 ADC_Mean 1.003 (0.997, 1.009) 0.302
 Ktrans_Mean 0.936 (0.903, 0.969) 0.000 1.627 0.938 (0.900, 0.979) 0.003
 Volume 1.002 (0.977, 1.029) 0.855
 pVol 0.989 (0.965, 1.013) 0.357
Model H2
 Age 0.924 (0.885, 0.965) 0.000 1.563 0.918 (0.867, 0.972) 0.004
 Frontal location 5.179 (1.687, 15.893) 0.004 1.494
 Necrosis 0.254 (0.085, 0.759) 0.014 1.299 0.216 (0.038, 1.217) 0.082
 Ringlike enhancement 0.193 (0.063, 0.593) 0.004 1.932
 No/mild enhancement 8.769 (2.056, 37.402) 0.003 1.873
 ADC_Mean 0.997 (0.991, 1.002) 0.198
 Ktrans_Mean 0.940 (0.910, 0.971) 0.000 1.637 0.945 (0.907, 0.984) 0.006
 Volume 1.046 (1.005, 1.089) 0.028 2.033
 pVol 1.043 (1.012, 1.074) 0.006 1.908 1.074 (1.020, 1.131) 0.007
Model H3
 Age 0.924 (0.885, 0.965) 0.000 1.329 0.924 (0.879, 0.971) 0.002
 Frontal location 5.179 (1.687, 15.893) 0.004 1.402
 Necrosis 0.254 (0.085, 0.759) 0.014 1.305
 Ringlike enhancement 0.193 (0.063, 0.593) 0.004 1.921
 No/mild enhancement 8.769 (2.056, 37.402) 0.003 1.638
 ADC_Mean 1.001 (0.998, 1.005) 0.453
 Ktrans_Mean 0.995 (0.978, 1.013) 0.576
 Volume 0.759 (0.621, 0.926) 0.007 3.378
 pVol 0.853 (0.767, 0.948) 0.003 3.695 0.840 (0.742, 0.951) 0.006
Model AHs
 Age 0.924 (0.885, 0.965) 0.000 1.563 0.918 (0.867, 0.972) 0.004
 Frontal location 5.179 (1.687, 15.893) 0.004 1.553
 Necrosis 0.254 (0.085, 0.759) 0.014 1.299 0.216 (0.038, 1.217) 0.082
 Ringlike enhancement 0.193 (0.063, 0.593) 0.004 2.073
 No/mild enhancement 8.769 (2.056, 37.402) 0.003 1.873
 Ktrans_Mean_Habitat 1 0.936 (0.903, 0.969) 0.000

Table 3 Univariable and multivariable logistic regression analysis for IDH genotype prediction
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1 and 2). Indeed, differences in DCE-PWI parameters 
between the two IDH genotypes of gliomas have been 
confirmed in numerous studies, and these parameters 
have demonstrated excellent performance in predict-
ing IDH mutation status [33–35]. However, compared 
to traditional methods that focus on changes in a single 
parameter within the tumor region of interest, we have 
particularly focused on observing the spatial distribu-
tion and interactions of multiple heterogeneous biologi-
cal features across the entire tumor mass. Our findings 
regarding Ktrans also align with previous habitat studies, 
which reported increased relative cerebral blood volume 
(rCBV) in low-angiogenic habitats of IDH-wildtype glio-
mas [15, 36]. Additionally, we found that IDH mutant 
gliomas had a higher volume and pVol of Habitat 2, while 
IDH wild-type gliomas had a higher volume and pVol 
of Habitat 3. This suggests that there may be more cell 
clusters with relatively high vascular integrity in IDH 

mutated gliomas and more activated proliferative cell 
populations in IDH wild-type gliomas. Our clustering 
analysis showed no significant results for ADC-related 
habitat indices, which are consistent with previous stud-
ies based on manual VOI definition and histogram analy-
sis [37, 38]. In fact, ADC seems to be a simplified metric 
influenced by many mixed histopathologic changes. Spe-
cifically, some changes may affect the signal intensity of 
DWI in the opposite way: high vascularity and frequent 
intra/extra-cellular water exchange in high-grade gliomas 
may increase ADC values, whereas high cellularity and 
macromolecular hindrance may decrease ADC values 
[39]. Besides, the ADC entropy, rather than ADC mean, 
was reported to be more resilient for reflecting IDH gene 
mutation status across different glioma grades [38].

Our univariate regression analysis showed that older 
age, the presence of necrosis and ringlike enhancement 
indicated a greater probability of IDH wild-type gliomas, 

Fig. 4 Receiver operating characteristic (ROC) curves of the multivariable logistic regression models for IDH prediction in entire cohort (A) and contrast-
enhanced subgroup (B). Model CM represents the multivariable logistic regression model based solely on clinical and morphological features. Models 
TV, H1, H2, H3, and AHs correspond to multivariable logistic regression models based on quantitative features from the tumor volume of interest (VOI), 
Habitats 1, 2, and 3, and all habitats, each incorporating clinical and morphological features

 

Variable Univariable Multivariable
OR (95% CI) P value VIF* OR (95% CI) P value

 Ktrans_Mean_Habitat 2 0.940 (0.910, 0.971) 0.000 2.317 0.945 (0.907, 0.984) 0.006
 Volume_Habitat 2 1.046 (1.005, 1.089) 0.028 2.033
 pVol_Habitat 2 1.043 (1.012, 1.074) 0.006 1.912 1.074 (1.020, 1.131) 0.007
 Volume_Habitat 3 0.759 (0.621, 0.926) 0.007
 pVol_Habitat 3 0.853 (0.767, 0.948) 0.003 2.298
Model CM represents the multivariable logistic regression model based on clinical and morphological data. Models TV, H1, H2, and H3 are extended models based 
on the tumor volume of interest (VOI) and Habitats 1, 2, and 3, respectively. Model AHs is an extended model based on all habitats. IDH, isocitrate dehydrogenase; 
OR, odd ratio; CI, confidence interval; VIF, variance inflation factor; ADC, apparent diffusion coefficient; Ktrans, volume transfer constant; pVol, volume percentage. 
*Variables with a value of less than 5 for this metric were finally retained before being included in the multivariable regression model

Table 3 (continued) 



Page 11 of 14Wang et al. Cancer Imaging           (2025) 25:11 

while the frontal lobe tumors with younger age of onset 
and non/mildly enhanced were more likely to be the IDH 
mutant type. These results have been confirmed in pre-
vious clinical and morphological studies [40, 41]. The 
multivariable logistic regression analysis indicated that 
the Habitat 2 representing “hypo-vasopermeability and 
hypo-cellularity” was a more comprehensive habitat for 
characterizing differences between the two IDH geno-
types, indicating a prominent variation in this subre-
gion between IDH mutant gliomas and their wild-type 
counterparts. Specifically, in IDH mutant gliomas, this 
subregion more likely corresponds to low-malignancy 
tissues with relatively high vascular integrity, which may 
be attributed to the fact that the IDH mutation regulates 
downstream cytoskeletal protein (like Tau), inhibiting 
angiogenesis and promoting vascular normalization [7, 
31]. In IDH wild-type gliomas, it is notable that this sub-
region appears to concentrate more around the periphery 
of central necrotic areas, which is consistent with histo-
logical slices and the multispectral quantification results 
[18, 32]. This finding suggests it more likely represents 
regions of severe hypoxia, which can induce epithelial-
mesenchymal transition of peripheral tumors and con-
tribute to progression and treatment resistance [42, 43]. 
In our entire cohort, the multivariate logistic regression 
model combining clinical, morphological features, and 
habitat metrics significantly outperformed traditional 
models and tumor VOI-based models in predicting IDH 
genotypes. Although this advantage did not overall reach 
statistical significance in the contrast-enhanced sub-
group, our findings still highlight the potential of habitat 
imaging based on DCE and ADC in providing additional 

ITH information for predicting IDH mutation status in 
gliomas.

We also found that habitat features are associated with 
PFS in IDH wild-type patients. PFS has been pointed 
out as a potential surrogate endpoint for overall survival 
(OS) in glioblastoma, as the hazard ratios for PFS and OS 
were strongly correlated (R² = 0.92) [44]. Previous MRI-
based habitat imaging studies have also observed that 
specific habitat indicators, such as rCBV and short-term 
increases of habitats reflecting perfusion and cellularity, 
are associated with patient survival [12, 14, 15, 36]. Inter-
estingly, our study showed that the indicators associated 
with patients’ PFS in IDH wild-type gliomas were pri-
marily found in Habitat 2, including ADC_Mean, volume, 
and pVol. MR spectroscopy findings on glioma intratu-
mor metabolites have indicated that tumor regions with a 
high concentration of lactate, a marker of hypoxia, exhib-
ited an increasing trend in ADC values [45]; hence the 
elevated ADC levels in Habitat 2 may reflect more severe 
hypoxia, which correlates with shorter PFS [46]. Further-
more, we found that the increased volume and pVol of 
Habitat 2 in IDH wild-type gliomas were associated with 
shorter PFS, likely due to the accumulation of severely 
hypoxic tissue components. All these findings seem to 
back up the previous hypothesis that the severely hypoxic 
tumor subregion is closely associated with tumor recur-
rence and progression. In fact, growing evidence indi-
cates that microscopic intravascular thrombosis, induced 
by the neoplastic overexpression of pro-coagulants, 
impairs the blood supply to gliomas (resulting in perfu-
sion-limited hypoxia), leading to extensive reorganization 
of the tumor microenvironment, which correlates with 

Table 4 Comparison of diagnostic performance of IDH predictive models in entire cohort and contrast-enhanced subgroup
Models AUC (95% CI) Sensitivity (%) Specificity (%) Accuracy (%) P value P value of Delong test* Goodness of fit 

test#

χ2 P value
Entire cohort
 Model CM 0.860 (0.741, 0.978) 72.7 97.6 88.9 0.000 0.044 12.947 0.114
 Model TV 0.871 (0.775, 0.967) 72.7 95.1 85.7 0.000 0.019 3.124 0.926
 Model H1 0.887 (0.795, 0.979) 72.7 95.1 85.7 0.000 0.029 5.932 0.655
 Model H2 0.940 (0.880, 1.000) 86.4 92.7 90.5 0.000 1.000 5.173 0.739
 Model H3 0.877 (0.781, 0.973) 68.2 95.1 84.1 0.000 0.026 7.327 0.502
 Model AHs 0.940 (0.880, 1.000) 86.4 92.7 90.5 0.000 - 5.173 0.739
Contrast-enhanced subgroup
 Model CM 0.820 (0.664, 0.975) 69.2 92.1 84.3 0.001 0.043 11.251 0.188
 Model TV 0.852 (0.707, 0.997) 76.9 94.7 90.2 0.000 0.057 8.181 0.416
 Model H1 0.858 (0.720, 0.996) 76.9 94.7 86.3 0.000 0.051 7.450 0.489
 Model H2 0.935 (0.862, 1.000) 76.9 97.4 90.2 0.000 1.000 8.411 0.394
 Model H3 0.860 (0.719, 1.000) 76.9 97.4 90.2 0.000 0.076 12.472 0.131
 Model AHs 0.935 (0.862, 1.000) 76.9 97.4 90.2 0.000 - 8.411 0.394
Model CM represents the multivariable logistic regression model based solely on clinical and morphological features. Models TV, H1, H2, H3, and AHs correspond 
to multivariable logistic regression models based on quantitative features from the tumor volume of interest (VOI), Habitats 1, 2, and 3, and all habitats, each 
incorporating clinical and morphological features. IDH, isocitrate dehydrogenase; AUC, area under curves; CI, confidence interval; VOI, volume of interest. *Model 
comparison with model AHs. #Hosmer-Lemeshow test
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Fig. 5 Kaplan-Meier curves for paired patient subgroups based on all quantitative metrics from Habitat 2 in (A) the IDH wild-type group and (B) the IDH 
mutant group.
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rapid tumor expansion, resistance to therapeutic inter-
ventions, and clinical progression [47]. Additionally, we 
did not observe any habitat features associated with PFS 
in IDH mutant gliomas. This finding may be limited by 
our insufficient follow-up period, and further investiga-
tion is needed for this tumor type.

Our study has some limitations. First, it was a single-
center study with a small sample size. Although we 
validated and strengthened our findings through cross-
validation and subgroup analysis, one major limitation 
remains the lack of internal and external validation with 
a larger cohort. Future studies including multi-center 
validations with larger sample sizes are needed. Another 
limitation was the inability to spatially match our images 
and pathological tissue samples, leading to the absence 
of gold standards for evaluating imaging heterogeneity. 
Multi-point sampling based on imaging heterogeneity 
maps may help address this issue and shows promise for 
future application. We expect that our findings may con-
tribute to future tumor sampling strategies.

Conclusion
In conclusion, habitat imaging derived from DCE-MRI 
and DWI may enable more precise delineation of subre-
gions most relevant to tumor vasopermeability and cellu-
larity in gliomas. Spatial habitats with distinct biological 
significance may provide valuable insights into intratu-
mor heterogeneity and serve as useful imaging markers 
in the preoperative prediction of IDH genotypes and 
prognosis in adult-type diffuse gliomas.
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