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Abstract
In recent years, it has been increasingly recognized that tumor growth relies not only on support from the surrounding micro-
environment but also on the tumors capacity to adapt to – and actively manipulate – its niche. While targeting angiogenesis 
and modulating the local immune environment have been explored as therapeutic approaches, these strategies have yet to 
yield effective treatments for brain tumors and remain under refinement. More recently, the nervous system itself has been 
explored as a critical environmental support for cancer, with extensive neuro-tumoral interactions observed both intracranially 
and in extracranial sites containing neural components. In the brain, interactions between glioma cells as well as metastatic 
lesions with neural components have clinical implications for diagnostics, risk assessments, neurological sequelae, and the 
development of innovative therapeutics. Here, we review these neuro-tumoral dynamics, emphasizing aspects relevant to 
neurosurgical practice.
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Introduction

Our understanding of glioblastoma biology, and glioma in 
general, is undergoing a transformative shift. Once termed 
“glioblastoma multiforme” to reflect its complex and het-
erogeneous appearance to neuropathologists, neuroradiolo-
gists and neurosurgeons for decades, the term has since been 
streamlined, molecularly defined and shortened to “glioblas-
toma” [41]. Rather than succumbing to the overwhelming 
“multiforme” nature of glioblastoma, previously deemed 
too complex for a unified therapeutic approach, modern 
analytical methods and biomathematical dissection have 
unraveled increasingly granular layers of this complexity, 
revealing underlying organizational principles. Key con-
cepts such as phenotypic synchronicity [44, 71], adaptabil-
ity [49] and multilayered cellular organization [23] along 

neuro-developmental patterns [5, 6] have emerged, provid-
ing a more structured understanding of the disease.

In parallel, the bidirectional interactions between tumor 
and the host microenvironment have become a central 
focus. Whereas earlier research predominantly targeted cel-
lular oncobiology to uncover therapeutic opportunities, the 
ability of the tumor to thrive from interaction with the host 
environment, adopting a neurocentric view [12] and a neu-
robiology of glioma [87] has highlighted the critical role 
of the glio-neuronal crosstalk, a phenomenon that can be 
seen as a “neural adaptive mimicry” (NAM) of tumor cells. 
This environmental adaptation grants glioma cells a survival 
advantage [45, 79]. Notably, neuro-adaptive mechanisms are 
not exclusive to intrinsic tumors; cerebral metastases from 
different cancers also leverage neural interactions for seed-
ing and survival [57, 92, 96, 99, 102].

Unfortunately, but unavoidably, the increments of concep-
tual understanding of simultaneously present cellular phe-
notypes and adaptive dynamics outpaces the translational 
capacity of neuro-oncology and neurosurgery for therapeutic 
innovation. Nonetheless, these new insights already have 
some present or potentially fast emerging clinical implica-
tions in the field of neuro-oncology. In this context, there are 
some implications specifically also for neurosurgery, like 
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risk adaptation or tailored anticonvulsive treatment [16], 
which will be further detailed herein.

Prognosis and risk assessment with molecular 
signatures

In respect to defining predictors of survival, brain tumor 
neuropathology – particularly for glioblastoma - underwent 
a transformative shift when epigenetics were included in 
the tumor assessment and classification [52]. The distinc-
tion between methylated and unmethylated MGMT promoter 
status has long been established as a clinical practice [27]. 
Extending epigenetic methylation analysis across the whole 
genome led to the development of a CNS tumor methylation 
classifier which is currently in global use [10] and is a fixed 
element of discussion in interdisciplinary tumor boards. 
This advancement has allowed for more precise allocation of 
tumors to molecularly defined groups, independent of their 
morphological appearance which allows for more precise 
entry criteria into current and future clinical trials and also 
potentially enables retrospective re-evaluation of past trial 
results for predictive markers [11, 64]. For example, conclu-
sions from clinical trials including a significant proportion 
of “oligo-astrocytoma” must now be reconsidered, because 
of the elimination of this entity by molecular genetics [63] 
and its non-existence in the methylation classifier. Until its 
elimination it has undoubtedly embraced diverse entities, 
now seen to have vastly different prognoses.

Importantly, the CNS methylation classifier has further 
enabled bioinformatic dissection of glioblastoma into sub-
types defined by methylation signatures, such as the receptor 
tyrosine kinase (RTK) types I and II and the mesenchymal 
subtype (MES) [10]. The mesenchymal signature, in par-
ticular, is thought to have the most substantial contribution 
from the microenvironment and from dynamics in response 
to therapies [8]. Clinical-correlation studies of the RTK I 
and RTK II glioblastoma subclasses have shown that the 
RTK II subgroup is associated with a higher risk of seizures 
[59]. More importantly, complete resection has a significant 
prognostic impact on overall survival [17] in RTK I and 
II subtypes but not in the MES subtype. Obviously, timely 
information on the molecular subclass would allow clini-
cians surgical risk stratification for cases where increasing 
extent of resection bears a risk of neurological harm, a risk 
not worth taking when the radicality is of diminished rel-
evance. This current conclusion of the impact of extent of 
resection wasbased on correlation of methylation subclass to 
gross total resection (GTR) as obtained in the available data 
set. (GTR) will universally remain the primary surgical goal 
for some time, and serve as main correlative comparator for 
clinical trials. Albeit, supramarginal resection is currently an 
evolving concept [103](see below) so this analysis needs to 
be re-evaluated and validated in suitable cohorts with more 

extensive resections to see whether the effect of methyla-
tion subclass on extent of resection is maintaned. It can be 
safely assumed, that, had the classifyer been available in the 
past, correlative analyses of the RTK subtype with surgical 
outcomes in historical series would have provided a clearer 
answer regarding the prognostic value of extent of resection, 
potentially resolving longstanding conflicts in the literature 
on this topic [55, 65, 72, 75].

While the RTKI/RTKII/MES distinction has already 
shown clinical relevance, further refinement in methylation 
analyses allows to propose more comprehensive patterns 
and the concept of signatures. These signatures assess tumor 
relationships to known tissue-specific methylation profiles or 
identify the contributions of such signatures within a tumor 
mass. Methylation-based signatures can be either organo-
typic or cell type specific. For various tissue, signatures 
based on methylation patterns – even down to the single-cell 
level - have been established and compiled into universally 
accessible atlases [2, 39, 42, 51, 75].

This approach allowed to propose a “neural” signature 
and to recently interrogate the methylation profile of gliomas 
from multiple consortial databases [19]. Using this neural-
like signature and defining it arbitrarily as “high” or “low” 
within a dataset of over 5,000 patients, it was found that a 
high neural-like signature was significantly associated with 
poorer overall survival [19]. The predictive power of “neural 
features” as such was already recognized earlier by clinical 
correlations of ion channels expression [56, 70, 77, 84]. In 
a biological context, this is to be interpreted as an advan-
tageous adaptation to exploit microenvironmental interac-
tions resulting in the previously mentioned NAM which 
has been firmly established to generate survival advantages 
for glioma cells [37, 53, 73, 78, 79, 81]. Conceptually this 
would ideally call for the additional assessment of epigenetic 
profiles to the neuropathological evaluation of glioblastoma. 
The dynamic epigenetic plasticity among different glioma 
cell populations [18] is to be seen as superimposed on the 
oncogenetic programs of gene mutations, amplifications, 
fusions or deletions [49] and a highly granular map exposing 
all therapeutic vulnerabilities might then emerge (Fig. 1). 
Looking ahead, the assessment of NAM as an additional 
prognostic parameter may complement the highly insight-
ful and widely used distinction of four glioblastoma states 
into oligodendrocyte-precursor like (OPC), neural-precursor 
like (NPC), mesenchymal like (MES) and astrocyte-like 
(AC) which was generated by integrated single cell RNA 
sequencing and genetic and expression analyses and high-
lights the plasticity between these states [49]. We face a 
growing complexity of analytical layers originally resulting 
in the distinction of pro-neural, neural, classical, mesenchy-
mal subtypes by gene expression analysis [82], later drop-
ping the “neural” subtype [85] with its further refinement by 
methylation profiling [52]. As complex and detached from 
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surgical reality as it appears, the currently emerging build-
up of layers of complexity reflects the necessary level of 
understanding required to improve treatment of glioblastoma 
in daily clinical practice.

The generation of methylation signatures from complex 
tissues through extraction and subsequent deconvolution 
requires advanced technological infrastructure, which will 
take time to implement in routine clinical practice. At pre-
sent, the highly promising result of the predictive power of 
the neural signature was generated from large international 
databases, extracting its information from tissues which were 
collected in a non-standardized way, rather than through a 
single, stringent protocol (see below). Consequently, the 
degree of contributions of the many different cell compo-
nents within each specimen of the cohorts remains unknown. 
Tumor cells, vascular cells, immune cells, stromal cells with 
a vast array of cellular signatures contribute to the overall 
datasets. Nevertheless, bioinformatic techniques, such as 
deconvolution, have been developed to estimate the rela-
tive contribution of a “neural” signature [1, 14, 46]. Several 
proposals for deconvolution of glioma datasets have been 
proposed, and it is expected that this process will undergo 
refinement, validation and eventually standardization as the 
essential components of these signatures are delineated. This 

bioinformatic process introduces a new dimension to tra-
ditional pathology and immunohistochemistry for markers 
like the predominant IDH-1 mutations, ATRX loss, assess-
ment of defined molecular features like EGF-R amplifica-
tion, or copy number variations, serving as the foundational 
“baseline signature” [86] (Fig. 1). Likely, molecular data 
and signatures will increasingly be used to train artificial 
intelligence on images, both radiological and pathological, 
so that with some accuracy, important information may be 
obtained preoperatively or rapidly thereafter [36]. In the case 
of IDH mutations in astrocytoma and oligodendroglioma, 
proof of concept in radiomics has already been demonstrated 
[95], but will be more challenging for glioblastoma, which 
by definition is IDH wildtype.

Neural adaptive characteristics have also been identified 
across a broad histological spectrum of brain metastases [66, 
93] specifically from breast [50, 96] and melanoma [9], with 
important implications for the current neurosurgical strate-
gies [34]. It is well established that en bloc resection in toto, 
when possible, is preferable to a piecemeal resection - not 
only for achieving complete resection but also minimizing 
the risk of meningeal seeding [74]. With the concept of gen-
eration of a favourable immediate microenvironment at the 
interface between metastases and brain, removal of a small 

Fig. 1  Conceptual description of the path to the synchronicity of mul-
tiple genomic /epigenetic signatures resulting in diverse cellular pro-
grams within GBM. Hierarchically, after the initial oncogenic event 
resulting in the initial signature level (SL 1), mostly genetics based, 
the further evolving gene-expression / epigenetic signatures will be 
modified by local selective pressure such as hypoxia or external pres-
sures like radiation and chemotherapy (SL 2). In the definitive, multi-

layered glioblastoma with increasing radial distance from the necrotic 
core, infiltration into the brain and fending off the immune surveil-
lance result in increasingly complex adaptive signatures also by 
acquisition of neural characteristics (neural adaptive mimicry, NAM) 
with increasing tumor vitality and subsequent poor patient survival. 
(Adopted in principle from Greenwald et  al. [23], referring to gene 
expression signatures.)
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rim of adjacent edematous brain may be warranted to mini-
mize local recurrence. To better understand the consistency 
of neural adaptation across different histological entities and 
in patients with multiple metastases, that peritumoral zone 
should be investigated whereever feasible, providing insights 
into tumor-induced microenvironmental changes and a sub-
sequent pro-tumorigenic or tumor supportive milieu. In 
most cases, as shown in studies on surgical methodology, 
this approach is considered safe [54].

Biological significance of signatures

Cellular signatures primarily reflect tumors´ opportunistic 
adaptions to the microenvironment, demonstrating their cel-
lular potential to interact and manipulate the surroundings. 
Through NAM, glioma cells can integrate into neural cir-
cuits, exploiting supportive neural signals [79, 94]. These 
interactions are both neurochemical [80] and mediated by 
soluble factors and opportunistic receptor expression, such 
as GDNF or Neuroligin 3 [81]. Conceptionally, disrupting 
these tumor-specific crosstalk pathways offers new therapeu-
tic opportunities [101].

Emerging therapeutic approaches include pharmaco-
logical interferences that exploit glutamatergic signaling 
pathways by antiepileptics drugs (AED). Even before the 
comprehensive description of the neuro-glioma synaptic 
integration, glutamatergic signaling was in the focus of 
early clinical trials, including the AMPA receptor antago-
nist talampanel [24]. Presently another more advanced anti-
glutamatergic agent, perampanel, is in clinical trials [29]. 
With the growing focus on NAM, integrating signatures of 
the respective tumor tissue into the correlative data analysis 
may show the functional relevance of glutamatergic signal-
ing for overall survival.

The awareness of neural adaptation in glioblastoma 
has also influenced drug screening strategies. In a recent 
high-throughput screening of over a million compounds, a 
„neuro-active“ profile was prioritized [98], highlighting the 
option of repurposing AEDs for glioma treatment. AEDs 
are used to mitigate glutaminergic hyperexcitability, which 
drives glioma cell proliferation. In contrast, AEDs working 
via enhancing GABAergic activity will be of no use and 
even contraindicated as GABAergic input is also supporting 
tumor growth [22]. The identification of novel anti-epileptic 
therapeutic targets has unveiled numerous therapeutic vul-
nerabilities within glioma, particularly involving cholinergic, 
adrenergic, dopaminergic, and serotonergic receptors [104]. 
More transmitter interfering approaches are to be expected 
with the caveat, that interfering selectively with these sys-
tems is challenging because of the integration of glioma 
innervating neurons (GIN) into regional or even distant 
neural networks [97]. However, evidence suggests that the 
electrophysiological characteristics of GINs may be different 

from non-glioma innervating neurons from the same areas 
of origin [97] and it remains to be explored whether that 
can be translated into therapeutic opportunities. Importantly, 
therapies targeting the opportunistic exploitation of synaptic 
transmission by glioma cells, should be viewed as adjuncts 
to existing base-line oncogenic programs [44]. Given the 
neural signature superimposed upon the baseline oncogenic 
program, chemotherapy will likely remain a foundational 
treatment, while potential drug interactions are still under 
investigation.

Additionally, cells with a neural signature appear to 
significantly modulate the immune environment, which is 
highly relevant to the numerous immunotherapeutic efforts 
in glioblastoma. The contribution of neural-like signaling 
to an immunosuppressive tumor environment correlates 
with poor survival across cancers [13]. In glioblastoma, the 
presence of neuronal input facilitates functional connectiv-
ity between glioblastoma cells and the host brain networks 
resulting in an immunosuppressive environment [100], par-
tially resulting from neuronally well connected tumor cells 
producing synaptogenic thrombospindin-1. Nonetheless, 
the specific signaling cascades involved in the cross-talk 
between glioblastoma cells, glutamatergic neurons, and 
immune cells remain to be elucidated [100].

Neurosurgical implications

Further understanding of the neuroadaptive mimicry in glio-
blastoma will necessitate changes in therapeutic approaches 
because of the simultaneous presence of different pheno-
types. This, representing the main reason for therapeutic 
frustration, commonly referred to as „heterogeneity“ is 
tumor-biologically to be seen as a synchronicity of different 
transcriptional programs across different tumor regions and 
special adaptations in the infiltration zone [26, 44]. This 
comes intrinsically with regional and likely also individu-
ally inconsistent susceptibilities to therapies, - unless they 
address the underlying oncogenic events, - what so far has 
proven to be ineffective and frustrating [4].

A key neurosurgical task in the current retrenching to 
map the synchronously present signatures is selective and 
well annotated sampling. Several examples exist for the 
power of such approaches [44, 71]. Recently, a proposal has 
been made for comprehensive tissue sampling by an inter-
national consensus [35]. At present, this may be considered 
a step back, but the present evolution of signatures, spe-
cifically the NAM, needs to be validated for consistency 
and correlation with clinical parameters such as anatomical 
location and zones of infiltration and imaging character-
istics. Quality of tissue sampling will have to be factored 
into correlative tissue analysis of clinical trials with drugs 
interfering with neural signaling as that neural program is 
likely spatially restricted and transient to allow for invasion 
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and colonization of the brain by the cells of the penumbra, 
so core tissue may give false negative correlations because 
samples taken out of the center may not predict the true drug 
target availability in the infiltrative zone. Likewise, longi-
tudinal sampling throughout recurrence and probably even 
multiple recurrences has to go with the same comprehensive 
sampling to be able to show possible therapy-induced adap-
tive dynamics of signatures [18]. Centers which are enabled 
to perform “window of opportunity trials“ may contribute 
to the issue of drug distribution if a drug is administered 
preoperatively and distribution assessed shortly after and 
correlated not only to perfusion characteristics but also the 
signatures from targeted sampling across the diverse tumoral 
and peritumoral zones.

One prerequisite for the comprehensive regional profiling 
is the provision of tissue also from the FLAIR region. In this 
context, the concept of supramarginal resection appears per-
fectly suited for obtaining information on the critical inva-
sive cells outside contrast enhancement. While supramar-
ginal resection has been refined rather for low-grade gliomas 
with consideration of connectomes and complex functional 
testing in awake surgery [20], it gets extrapolated to glio-
blastoma and even lobectomies when feasible are considered 
again as recently reviewed [3]. Naturally the limitation in 
the reviewed series is to right frontal and temporal locations 
[61, 67] but it indirectly confirms the crucial relevance of 
the penumbra cell population. Accordingly, also the degree 
of invasiveness has recently been correlated to increase in 
survival when supramarginal resections are performed [76]. 
On the one hand that proof is reassuring in justifying to 
performe aggressive surgery, but on the other hand it must 
be considered that in contrast to diffuse low-grade tumors, 
with glioblastoma there is less time for plasticity-based 
“rewiring” of the brain. Thus, supramarginal strategies will 
be limited where speech, memory and motor functions are 
not inside the immediate infiltration zone starting at the edge 
of contrast enhancement and can be monitored. Also, some 
neuropsychological qualities like emotional reactivity will 
be difficult to test even in the awake situation [33], so there 
are also voices seeing that supramarginal concept critical 
[25] illustrating the highly diverse views on “eloquence”.

Another prerequisite in the context of neural signature 
assessment in the tumoral penumbra is the refinement of 
analytical technology as the density of tumor cells in the 
healthy appearing infiltration zone is low, calling for single 
cell analyses which will be challenging to become routine 
for some time.

Apparently, from current studies with spatial resolution 
it appears as if the infiltrative edge is the zone in which 
the tumor afforded mimicry is translated into a host-inter-
active advantage. Local therapies have mostly aimed to take 
oncotherapy to the borders, to reach some additional thera-
peutic effect adding to resection using BCNU-wafers [89], 

adenoviral prodrug converting gene therapy [90], oncolytic 
virus [48] or intracavitary radioimmunotherapy [62]. From 
the current thinking it is conceivable that interfering with 
neuro-adaptive mechanisms at the infiltrative edge may be 
an additional new targeted perspective for local therapy once 
we know the mechanisms and have stable substances pen-
etrating far enough away from the edge.

In essence, the opportunity for surgical risk adaptation 
according to RTK/MES status and the clinical prognostic 
relevance of tissue from appropriately collected specimens 
and future drug selection according to deconvoluted sig-
natures call for neurosurgical integration of these current 
developments. An ideal situation in which a tailored aggres-
siveness can be ascribed to each patient, will be linked to 
refinement of techniques to preoperatively assess predictors, 
which at least could reflect the RTK type, and the extent of 
NAM as assessed by the neural methylation signature. This 
leads to the efforts of biomarker development which will be 
briefly touched.

Signatures and biomarker development

The liquid biopsy field has entered also neuro-oncology 
with many potential applications [69, 83, 88]. Cell free 
DNA (cfDNA) from serum has become a workhorse in 
general oncology to look for specific mutations [7]. In addi-
tion, circulating tumor cells are a very useful tool in clini-
cal oncology, but for glioblastoma of limited applicability 
[47]. Paradigmatic mutations found in cfDNA for glioblas-
toma like the EGF-RvIII or TERT mutations or copy num-
ber variations would be of bona fide value as biomarkers 
with the caviat of yet unsatisfactory detectability.However, 
they only indicate the baseline of transformative oncogenic 
events onto which the epigenetic signatures and subsequent 
expression signatures are superimposed. Extracellular vesi-
cles appear attractive as a source of information as intra- and 
extravesicular cargo seems to be able to reflect the cellu-
lar methylation pattern, at least from cells in culture [43]. 
The analysis of EVs from serum is still burdened with the 
quest for adequate selective purification of tumor derived 
EVs with distinctive markers. In addition, it has not yet been 
proven, that the origin of the DNA attached to GBM-EVs is 
definitively and exclusively from the living or dying cells of 
presumed origin. The numbers of EVs in serum are clearly 
associated with tumor burden, and extent of FLAIR [60], 
but likely reflect the origin from both, all cells in the tumor 
as well as its reactive surroundings [91]. Thus, future work 
has to correlate representative tissue sampling, harvesting of 
tissue EVs and correlation of findings with serum and when 
possible CSF EVs. How granular analysis of EVs and their 
reflection of signatures can get will have limits, as specific 
signatures like in hypoxic „spots“ [23] will enter the bulk of 
EVs and it will be a deconvolutional task to push the limits 
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of signature distinction. With refinement of isolation and 
single EV techniques in progress, it will still take some time 
before EVs enter a biomarker routine. With the EVs reach-
ing the blood stream via a postulated glymphatic system in 
the brain and connectivity of the glymphatics with the CSF, 
the analysis of CSF to look for marker molecules, specifi-
cally cfDNA [32] for tumor is another way to try and capture 
as much information on a tumor signature as possible [68].

In parallel to efforts to preoperative marker assessment, 
promising intraoperative sequencing technologies are in the 
state of validation such as nanopore sequencing [15] which 
in combination with computational techniques shows prom-
ise to provide real time guidance [28]. Raman spectroscopy 
has already been refined to very accurately define the cel-
lular composition at the border of resection [21]. It has to 
be seen whether integration and training of artificial intel-
ligence will at some point pick up the critical cellular sig-
natures when spectra are adequately deconvoluted [30, 31, 
38, 40, 58].

In conclusion, the emerging insights into the factual neu-
robiology of glioblastoma have led to a deeper understanding 
of biological roots for tumor evolution and behavior. New 
neural centered pharmacological therapeutic opportunities 
have arisen as an additive to current therapy of the known 
oncotargets. In addition, the degree of NAM, captured by a 
methylation signature with evolving pre- and intraoperative 
technologies will allow for surgical risk adaptation based 
on epigenetic profiling resulting in optimal safe resections. 
In essence, integrating the new conceptual understanding of 
tumor-host interactions should lead towards a neuroscience 
informed surgery of brain tumors.
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