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Abstract
Purpose Alternating electric fields (AEF) therapy in addition to temozolomide chemoradiotherapy (TMZ CRT) is increas-
ingly being recommended as first-line treatment for patients with newly-diagnosed WHO grade 4 astrocytoma. However, 
few have validated this treatment with real-world evidence.
Methods Consecutive adult patients with newly-diagnosed WHO grade 4 astrocytoma treated with adjuvant TMZ CRT 
across all neuro-oncology centers in Hong Kong were reviewed. Identified from a territory-wide prospective glioma registry, 
propensity-score matching (1:2) was performed to match patients that either received TMZ CRT with AEF or TMZ CRT 
alone. Matching was according to age, Karnofsky performance status, IDH-1 mutation, pMGMT methylation and extent 
of resection. The primary endpoint was overall survival (OS). Secondary endpoints were the incidence of AEF-associated 
adverse effects and mean monthly treatment compliance.
Results 141 patients were reviewed, of whom 47 patients received AEF with TMZ CRT and 94 had CRT alone. Multivari-
ate Cox proportional hazards analysis revealed that patients with pMGMT-methylated tumors (mOS: 30.8 months vs. 16.7 
months [95% CI: 1.9–4.7] and those that received AEF (mOS: 22.8 vs. 14.3 months [95% CI: 1.9–4.7]) had longer OS. AEF 
therapy patients had a mOS benefit of 8.5 months. The mean monthly treatment compliance was 74 ± 12%. A compliance 
threshold of 60% conferred a survival benefit of 4.1 months (mOS: 21.5 months vs. 17.4 months [95% CI: 0.10–0.96]). The 
only identified AEF-associated adverse reaction was scalp dermatitis that occured in 77% (36/47) of patients.
Conclusion This post-approval study offers real-world evidence in support of the use of AEF therapy as first-line treatment.

Keywords Alternating electric fields · Tumor treating fields · WHO grade 4 astrocytoma · Glioblastoma · 
Temozolomide chemoradiotherapy · Overall survival
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Abbreviations
AEF  Alternating electric fields
aHR  Adjusted hazard ratio
ANOVA  Analysis of variance
CI  Confidence interval
CNS  Central nervous system
CRT  Chemoradiotherapy
EOR  Extent of resection
GTR  Gross total resection
HA  Hospital Authority
IDH-1  Isocitrate dehydrogenase-1
IQR  Interquartile range
KPS  Karnofsky Performance Status
MRI  Magnetic resonance imaging
NCDB  National Cancer Data Base
OS  Overall survival
PFS  Progression-free survival
pMGMT  Methylguanine-methyltransferase promoter
QoL  Quality-of-life
RCT  Randomized-controlled trial
RTOG  Radiation Therapy Oncology Group
SD  Standard deviation
SNO  Society for Neuro-oncology
SOC  Standard-of-care
STR  Subtotal resection
TMZ  Temozolomide
WHO  World Health Organization

Introduction

World Health Organisation (WHO) grade 4 astrocytoma is 
the commonest primary malignant tumor in adults with a 
prevalence of 1–5 per 100 000 population [1, 2]. In spite of 
standard-of-care (SOC) multimodality treatment, compris-
ing of maximal safe resection and temozolomide chemora-
diotherapy (TMZ CRT), the median overall survival (mOS) 
remains only 11–15 months [1, 3]. Since 2005 there has 
been no breakthrough treatment that has resulted in a sig-
nificant and consistent improvement in OS.

Alternating electric fields (AEF), otherwise known as 
tumor-treating fields, is a novel therapy that involves the 
application of non-invasive transcranial regional AEF 
of low intensity (1–3 V/cm) and intermediate frequency 
(200 kHz) to the post-resection cavity through the place-
ment of scalp transducer arrays [4]. Preclinical studies 
observed that the application of these electric fields resulted 
in tumor cell mitotic arrest by dielectrophorectic disruption 
of spindle formation during the metaphase [4, 5]. Its clinical 
efficacy was supported by the landmark EF-14 phase III ran-
domized-controlled trial (RCT) that demonstrated a signifi-
cant increase in mOS among newly-diagnosed glioblastoma 

patients that received AEF in addition to TMZ CRT com-
pared to those that received CRT alone (21 versus 17 
months; 95% CI: 0.53–0.76) [6]. These findings were cor-
roborated by several smaller scale single-arm prospective or 
case-controlled studies as well as two meta-analyses [7–19]. 
However, there is a relative lack of evidence derived from 
real-world experience analyzing prospectively collected 
data comparing a meticulously selected control group that 
accounted for widely acknowledged survival prognostic 
factors such as age, Karnofsky performance status (KPS), O 
[6]-methylguanine-methyl transferase (pMGMT) promoter 
methylation status and tumor extent of rection (EOR).

There are several challenges of translating RCT findings 
to real-world practice, particularly for glioblastoma. They 
can be broadly classified into issues related to the complexi-
ties of oncobiology such as tumoral genetic, epigenetic, 
transcriptomic or microenvironment heterogeneity, the limi-
tations of primary SOC treatment and the difficulties posed 
by existing clinical trial designs. Inter- and intratumoral 
heterogeneity indicate how variability between individuals 
and within different regions of the same tumor complicates 
the identification of a single predictive biomarker or thera-
peutic target thereby increasing the likelihood of treatment 
failure beyond the highly-controlled context of a trial [20]. 
For real-world cohorts, a substantial proportion of patients 
would be excluded from RCTs due to the inadequate effec-
tiveness of first-line TMZ CRT, whereby either 59% pro-
gressed during therapy and 63% failed to complete it [21]. 
Consequently, the majority of patients encountered in daily 
neuro-oncological practice would not meet fundamental eli-
gibility criteria for interventional trials. Finally, most RCTs 
focus on a highly selected subgroup of patients with a favor-
able prognostic risk profile and fail to stratify for subjects 
with unfavorable clinical features for example, older then 
70 years or have poorer functional performance. This is one 
of the major reasons why epidemiological studies generally 
document appreciably shorter patient OS than described in 
RCTs [1, 22]. 

Real-world evidence studies offers a more decisive exter-
nal validation on the effectiveness of novel therapies with-
out the need to commit to the intensive resource demands 
of a clinical trial. It is therefore crucial to identify appro-
priate comparison control group patients in order to attain 
meaningful conclusions. To achieve this, a propensity-score 
matched multi-center study derived from prospectively col-
lected glioma registry data was performed.
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Materials and methods

Study population and data collection

This was an investigator-initiated multicenter study that 
analyzed prospectively collected data of propensity-score 
matched WHO grade 4 astrocytoma patients that either 
received AEF with TMZ CRT or CRT alone. The study 
was approved by the Hong Kong Hospital Authority (HA) 
institutional review board (reference number: UW 19–626) 
and was conducted according to the Declaration of Helsinki 
and Good Clinical Practice. Hong Kong is a special admin-
istrative region in China with a population of 7.8 million 
where 94% of the population is ethnic Chinese [23]. Uni-
versal healthcare is delivered by the HA, a statutory body 
that manages all public hospitals, responsible for 90% of 
inpatient bed-days in the city. Consecutive adult patients 
(≥ 18 years-old) from all of the city’s seven neuro-oncology 
centers with newly diagnosed, histologically-confirmed 
WHO grade 4 astrocytoma from 1 January 2009 to 30 
June 2022 were reviewed [24]. The diagnosis was made in 
accordance to the 4th WHO Classification of Tumors of the 
Central Nervous System (CNS) and all subjects completed 
TMZ chemoradiotherapy [25]. The standard treatment dose 
for TMZ chemotherapy was 75mg/m2/day for six weeks 
and was prescribed concomitantly with radiotherapy of 
60 Gy over 30 fractions [3]. Subsequent maintenance che-
motherapy comprised of TMZ 150-200mg/m2/day for five 
days every four weeks for at least six cycles was adminis-
tered [3]. AEF therapy (Optune™, Novocure GmbH, Root, 
Switzerland) was first introduced to Hong Kong in Janu-
ary 2019 where patients either self-financed their treatment 
or were fully subsidized via the HA AEF pilot scheme, a 
service where selected patients of ≤ 70 years were offered 
the treatment free-of-charge [26]. AEF was administered 
within seven weeks after CRT in accordance to the EF-14 
study and patients were encouraged to comply to treatment 
for ≥ 18 h a day or achieve a mean monthly device usage 
of ≥ 75%.6 All patients were clinically assessed at one-to-
three monthly intervals with regular MRI scanning per-
formed every three-to-six months. Patients that developed 
progressive disease before or during the concomitant CRT 
phase, could not complete CRT, only underwent a tumor 
biopsy, had the tumor located in the cerebellum, received 
prior radiotherapy, had unknown tumor isocitrate dehydro-
degenase-1 (IDH-1) mutation status, unknown pMGMT 
methylation status, had a prior histopathological diagnosis 
of a lower grade glioma or had a concomitant disabling 
condition that precluded a preoperative KPS of ≥ 80 were 
excluded. Patients were not considered candidates for AEF 
if they experienced an active scalp or CNS infection, medi-
cally refractory seizures, radiotherapy-induced skin toxicity 

of Radiation Therapy Oncology Group (RTOG) grade 4, 
had a deep brain stimulation implant or had inadequate care-
giver support. All AEF subjects or their legal representatives 
provided written informed consent.

Clinical data was retrieved from the Hong Kong Glioma 
Registry, a prospectively-collected population-level central 
database of adult patients with histologically-confirmed 
glioma from 2010 to 2022 [1]. Data was categorized into 
patient-, tumor- and treatment-related factors. Patient-
related data included age, gender, preoperative KPS and 
post-concomitant CRT KPS. Post-concomitant CRT KPS 
was selected for functional performance assessment as AEF 
would be initiated at this time point. Tumor-related data 
included its location, IDH-1 mutation status and pMGMT 
methylation status. IDH-1 mutations were either deter-
mined by immunohistochemistry or by DNA sequencing 
if the former results were equivocal or if the patient was 
younger than 55 years-old. pMGMT methylation was ascer-
tained by methylation-specific polymerase chain reaction 
testing. EOR was determined either by reviewing postop-
erative day-one magnetic resonance imaging (MRI) gado-
linium contrast-enhanced scans on workstations installed 
with Centricity Enterprise Web (General Electric Medi-
cal Systems, Barrington, Illinois, USA) image viewers or 
when such scans were not available, by the neurosurgeon’s 
assessment documented in the operation records. EOR was 
categorized in accordance with the Response Assessment 
in Neuro-oncology (RANO) resect group criteria [27]. The 
postoperative MRI presence of residual tumor after the con-
comitant phase of CRT was also documented. The use of 
regional treatments such as interstitial chemotherapy, laser 
interstitial thermal therapy or intracavitary radiotherapy was 
determined. The primary endpoint was OS, defined as the 
duration from the date of the first surgery that confirmed 
the diagnosis of WHO grade 4 astrocytoma until death. The 
secondary endpoints were progression-free survival (PFS), 
mean monthly AEF therapy compliance, i.e. device usage, 
and its associated adverse effects. PFS was defined as the 
duration from the date of the first surgery to the date of clini-
cal and/ or radiological progression. All cases were censored 
by 30 September 2023.

Statistical analysis

Patients that received AEF + CRT were matched with patients 
from the CRT alone group using the matchit package in R 
(version 4.1.0) [28]. A propensity score was estimated using 
a fitted logistic regression model to predict the probability 
of receiving AEF therapy upon completion of CRT founded 
on a set of covariates [29]. These a priori factors were: gen-
der, age, preoperative KPS (80–100 vs. < 80), post-concom-
itant CRT KPS (80–100 vs. < 80), tumor location by lobe, 
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group patients and those that were not selected for propen-
sity score matching. A p-value of < 0.05 was considered sta-
tistically significant. These tests were performed utilizing 
the Statistical Package for the Social Sciences software ver-
sion 21.0 (SPSS Inc., Chicago, Illinois, USA).

Results

During this 14-year period, 1000 patients with histologi-
cally-confirmed newly-diagnosed WHO 4 astrocytoma were 
screened and 454 (45%) were eligible for review (Fig. 1). 
All patients were ethnic Chinese patients. 48 (11%, 48/454) 
patients received AEF in addition to TMZ CRT. After a 1:2 
propensity score adjustment, a cohort of 141 patients com-
prising 47 AEF + CRT patients and 94 CRT control patients 
were identified (Table 1). The mean follow-up duration for 
the entire cohort was 26.5 ± 14.9 months. The mean age of 
was 52 ± 13 years old (range: 18–78) with a female: male 
ratio of 1:2. Most patients had a preoperative and post-con-
comitant CRT KPS of ≥ 80, i.e. 74% (104/141) and 73% 

tumor location by hemisphere, IDH-1 mutation (wildtype 
vs. mutant), pMGMT methylation (methylated vs. unmeth-
ylated), EOR and residual tumor after concomitant CRT. For 
the propensity score model, a linear relationship between 
continuous covariates and the log-odds of receiving AEF 
therapy were assumed. The matchit package employed a 
nearest neighbour matching algorithm to form a 1:2 ratio 
propensity score-matched study sample of AEF-treated to 
CRT alone patients using a logit calliper width of 0.2 of the 
standard deviation [30]. 

Demographic cohort data was summarized using standard 
descriptive statistics. To test differences between the groups, 
the Pearson’s chi-squared test (categorical variables), two-
tailed Student’s t-test for independent groups (continuous 
variables) and one-way analysis of variance (ANOVA) was 
carried out for continuous variables with more than two 
groups. Survival analysis was performed using multivari-
ate Cox proportional hazards modelling. Survival probabili-
ties were represented by Kaplan-Meier plots and subgroup 
analysis by log-rank testing. Post-hoc sensitivity analysis 
was performed to compare OS between CRT-alone control 

Fig. 1 Flowchart of the Hong Kong Glioma Registry patients diagnosed with WHO grade 4 astrocytoma that were reviewed and final selection for 
analysis after propensity-score matching. N. B. TMZ, temozolomide; AEF, alternating electric fields
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Table 1 Patient characteristics of the unmatched and matched overall cohorts
Unmatched Cohorts P-value Matched Cohorts P-value
Control Group Intervention Group Control Group Intervention Group
TMZ CRT Alone TMZ AEF + CRT TMZ CRT Alone TMZ AEF + CRT
n = 406 (%) n = 48 (%) n = 94 (%) n = 47 (%)

Patient-factors
 Gender
  Male 252 (62) 29 (60) 0.824 67 (71) 28 (60) 0.162
 Age at diagnosis, years,
  Mean ± SD 55 ± 13 53 ± 13 0.637 53 ± 13 54 ± 13 0.669
  ≥ 65 years 83 (20) 7 (15) 0.336 13 (14) 7 (15) 0.864
  Range 18–81 23–76 - 19–78 23–76 -
 Preoperative KPS
  ≥ 80 206 (51) 35 (73) 0.004 70 (70) 34 (72) 0.793
 Post-concomitant CRT KPS
  ≥ 80 197 (49) 34 (71) 0.003 69 (73) 34 (72) 0.833
Tumor-factors
 Location
  Frontal 149 (37) 18 (38) 0.542 30 (32) 17 (36) 0.812
  Temporal 115 (28) 17 (35) 0.507 37 (39) 17 (36) 0.75
  Parietal 102 (25) 7 (15) 0.062 12 (13) 7 (15) 0.734
  Occipital 22 (5) 3 (6) 0.824 6 (6) 3 (6) 0.945
  Insula 18 (4) 3 (6) 0.948 9 (10) 3 (6) 0.588
 Laterality
  Left hemisphere 184 (45) 25 (52) 0.407 38 (40) 24 (51) 0.223
 IDH-1 mutant 28 (7) 5 (10) 0.628 8 (9) 5 (11) 0.7
 pMGMT methylated 160 (40) 20 (44) 0.522 42 (45) 20 (43) 0.881
Treatment-factors
 Extent of resection*
 Class 1:
 supramaximal CE resection 65 (16) 9 (19) 0.758 14 (15) 6 (13) 0.801
 i.e. residual tumor:
 0cm3 CE + ≤ 5cm3 nCE
 Class 2
 maximal CE resection 104 (26) 12 (26) 0.893 25 (27) 15 (32) 0.551
  A: complete CE resection
  i.e. residual tumor:
  0cm3 CE + > 5cm3 nCE
  B: near total CE resection 227 (56) 27 (56) 0.912 55 (59) 26 (55) 0.733
  i.e. residual tumor:
  ≤ 1 cm3 CE
 Class 3
 submaximal resection 10 (2) 0 0.944 0 0 -
  A: subtotal CE resection:
  i.e. residual tumor:
  ≤ 5cm3 CE
  B: partial CE resection: 0 0 - 0 0 -
  i.e. residual tumor:
  > 5cm3 CE
 Class 4:
 biopsy 0 0 - 0 0 -
 no tumor volume reduction
 Post-concomitant CRT residual tumor 207 (51) 27 (56) 0.803 47 (50) 26 (55) 0.878
N.B. TMZ, temozolomide; CRT, chemoradiotherapy; AEF, alternating electric fields; KPS, Karnofsky performance status, GTR, gross total 
resection; STR, subtotal resection; IDH-1, isocitrate dehydrogenase-1; pMGMT, promoter region of methylguanine-methyltransferase; CE, 
contrast-enhancing; nCE, non-contrast-enhancing
*Absolute residual tumor volume according to RANO resect criteria by Karschnia et al. (in Journal of Neuro-oncology, 2023)
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post-concomitant CRT KPS, no significant difference with 
regard to conventional prognostic factors were observed 
between the AEF + CRT and CRT control groups (Table 1). 
After propensity-score matching, patients in the AEF + CRT 
and CRT groups were comparable in all matched subgroups 
in terms of patient-, tumor-related factors, EOR and residual 
tumor after concomitant CRT.

Predictors for survival

Overall, the mOS was 16.3 months (IQR: 11.2–24.5) with 
the proportion of patients achieving 12-, 18- and 24-month 
survival being 68% (96/141), 42% (59) and 26% (36) respec-
tively. From univariate analysis, predictors for improved OS 
were: IDH-1 mutant tumors (log-tank test, p-value: 0.04), 
pMGMT methylated tumors (p-value < 0.001) and AEF 
(p-value < 0.001) (Fig. 2). Patients that received AEF had 

(103/141) respectively. There was neither a significant 
difference in functional performance for the entire cohort 
(p-value: 0.82) nor among the CRT-alone and AEF + CRT 
groups (p-value: 0.77). Most tumors were located in the tem-
poral lobe (38%, 54) followed by the frontal (33%, 47) and 
parietal lobes (14%, 19). 9% of tumors (13/141) were IDH-1 
mutant and 44% (62) were pMGMT methylated. Supramax-
imal (i.e. RANO class 1) or complete contrast-enhancing 
lesion resection (i.e. RANO class 2A) was achieved in 43% 
(60) of patients. Post-concomitant CRT MRI scans were 
performed at a mean duration of 97 ± 23 days after diag-
nosis and residual contrast-enhancing tumor was detected 
in 52% (73) of patients. None of the patients received 
regional therapy such as interstitial chemotherapy, intra-
cavitary radiotherapy or laser interstitial thermal therapy as 
first-line treatment. None of the patients were recruited in a 
clinical intervention trial. Apart from preoperative KPS and 

Fig. 2 Kaplan-Meier survival analysis demonstrating predictors 
for overall survival for the entire patient cohort (a-c) and the effect 
of AEF on progression-free survival (d). N.B. TMZ, temozolo-

mide; CRT, chemoradiotherapy; AEF, alternating electric fields; 
IDH-1, isocitrate dehydrogenase-1; pMGMT, promoter region of 
methylguanine-methyltransferase
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control group patients that had preceding gross total tumor 
resection (41%, 39/94) and their non-selected counter-
parts (37%, 116/ 312). There was no significant difference 
in the proportion of patients that had gross total resection 
(p-value: 0.87) between these two groups. The mOS also 
continued to be significantly shorter for the matched control 
group patients of this study with a mOS of 14.3 (IQR 9.3–
20.3) versus 12.4 months (IQR: 10.6–23.6, p-value: 0.03). 
The only identified contributing factor for the disparity in 
mOS between both groups was the significantly higher pro-
portion of selected control patients that had a preoperative 
KPS ≥ 80 (70% versus 51%) and post-CRT KPS ≥ 80 (73% 
versus 49%) (Table 1).

Predictors for overall survival among AEF patients

AEF was initiated at a mean duration of 43 ± 28 days after 
completion of CRT and 161 ± 147 days (5.4 ± 4.9 months) 
after tumor resection. The proportion of patients with a post-
concomitant CRT KPS ≥ 80 was 72% (34/47), i.e. before the 
initiation of AEF. Residual tumor was detected before the 
initiation of AEF in 55% (26/47) of patients. The mean dura-
tion of AEF was 428 ± 310 days (15.3 ± 10.3 months) and 
the mean monthly compliance to treatment was 74 ± 12%. 
Age ≥ 65 years, preoperative KPS ≥ 80, post-concomitant 
CRT KPS ≥ 80, laterality, tumor location, IDH-1 mutant 
tumors, pMGMT methylated tumors or duration from resec-
tion-to-AEF and from CRT-to-AEF were not predictors for 
survival (Table 3). The only factor associated with longer OS 
was a monthly mean AEF treatment compliance of ≥ 60% 
(≥ 14.5 h per day) (Fig. 4). AEF patients that could achieve 
this threshold had a mOS of 21.5 months (IQR: 15.4–33.1), 

a mOS survival benefit of 7.0 months compared to those 
that did not (21.4 months versus 14.4 months). Multivariate 
Cox proportional hazards analysis revealed that pMGMT-
methylated tumors (adjusted OR: 4.0; 95% CI: 2.1–7.4) 
and patients that received AEF (aOR: 3.8; 95% CI: 2.2–6.6) 
were independent predictors for OS (Fig. 3). After adjust-
ing for confounding factors, patients with pMGMT-meth-
ylated tumors had a mOS benefit of 14.1 months (log-rank 
test, p-value < 0.001) and those that received AEF had an 
improved mOS of 8.5 months (22.8 months versus 14.3 
months, p-value < 0.001). Multivariate binary logistic 
regression for 12-, 18- and 24-month survival revealed that 
AEF was an independent treatment factor (Table 2). The 
odds for AEF + CRT patients to reach these survival times 
points was fourfold greater than those that only received 
CRT. The 12-, 18- and 24-month survival rates of patients 
that received AEF were 85% (40/47), 62% (29) and 40% 
(19) respectively. In contrast, patients that received CRT 
alone had corresponding survival rates of 60% (56/94), 
32% (30) and 18% (17). For the entire cohort the median 
PFS was 9.6 months (IQR: 5.4–16.5). Kaplan-Meier sur-
vival analysis revealed that AEF + CRT patients had a sig-
nificantly longer median PFS compared to those that only 
received CRT (log-rank test, p-value: 0.003) (Fig. 2).

Post-hoc sensitivity analysis was performed to com-
pare OS between matched CRT-alone control group 
patients (n = 94) and the remaining CRT patients that were 
not selected for propensity score matching (n = 312). The 
matched CRT-alone patients had a significantly longer mOS 
of 14.2 months (IQR: 11.3–17.2) compared to those that 
were excluded from the analysis that had a mOS of 12.3 
months (IQR: 10.6–14.0, Cox-regression, p-value: 0.03). A 
subgroup analysis was performed between CRT-alone study 

Fig. 3 Kaplan-Meier survival analysis of independent predictors for overall survival. N.B. TMZ, temozolomide; CRT, chemoradiotherapy; AEF, 
alternating electric fields; pMGMT, promoter region of methylguanine-methyltransferase
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skin toxicity, i.e. maculopapular scalp rash, and 4% (2/47) 
developed grade 2 toxicity, i.e. dry desquamation. All scalp 
adverse reactions were completely reversible after tempo-
rary AEF therapy cessation (4%, 2/47) of a mean duration 
of 3.5 ± 1.6 weeks, or by the application of topical hydrocor-
tisone creams and scalp hydrating emollients. None of the 
patients had to terminate treatment due to scalp dermatitis.

conferring a survival benefit of 4.1 months, compared to 
those that were less compliant (log-rank test, p-value: 0.03).

AEF-associated adverse effects

The only AEF-associated adverse effect observed was 
scalp array-induced dermatitis. No systemic adverse reac-
tions or seizures directly attributable to AEF therapy were 
noted. 77% (36/47) of patients experienced RTOG grade 1 

Table 2 Predictors for 12-month, 18-month and 24-month overall survival
12-month OS 18-month OS 24-month OS
Univariate 
analysis

Multivariate 
analysis

Univariate 
analysis

Multivariate 
analysis

Univariate 
analysis

Multivari-
ate analysis

OR (95% CI) aOR (95% CI) OR (95% CI) aOR (95% CI) OR (95% CI) aOR (95% 
CI)

Patient-factors
 Gender
  Male 0.56 (0.25–1.25) 0.61 (0.30–1.24) 0.50 (0.23–1.09)
 Age ≥ 65 years 0.67 (0.25–1.75) 0.55 (0.20–1.53) 0.47 (0.13–1.71)
 Preoperative KPS ≥ 80 1.57 (0.73–3.36) 0.89 (0.43–1.85) 0.91 (0.40–2.08)
 Post-concomitant CRT KPS ≥ 80 1.12 (0.89–2.98) 0.90 (0.41–1.71) 0.98 (0.56–1.99)
Tumor-factors
 Location
  Frontal 0.13 (0.84–4.11) 1.75 (0.87–3.57) 1.91 (0.88–4.17)
  Temporal 0.51 (0.38–1.62) 1.34 (0.68–2.67) 1.21 (0.56–2.62)
  Parietal 0.31 (0.22–1.61) 0.33 (0.10–1.04) 0.51 (0.14–1.85)
  Occipital 0.52 (0.34–8.45) 0.68 (0.63–2.83) 0.35 (0.04–2.87)
  Insula 0.59 (0.12–2.94) 0.44 (0.11–1.68) 0.24 (0.30–1.96)
 Laterality
  Left hemisphere 0.96 (0.47–1.97) 0.99 (0.50–1.94) 0.83 (0.39–1.79)
 IDH-1 mutant 3.9 (0.47–3.02) 4.7 (0.92–2.40) 2.98 (1.74–4.65)
 pMGMT methylated 2.91 (1.25–6.78) 3.23 

(1.33–7.69)
3.16 (1.48–6.75) 3.70 

(1.64–8.33)
5.02 (2.06–12.24) 5.88 (1.96–

17.24)
Treatment-factors
 Extent of resection*
 Class 1:
 supramaximal CE resection i.e. 
residual tumor:

1.44 (0.89–1.76) 1.34 (0.65–1.97) 1.08 (0.91–1.14)

 0cm3 CE + ≤ 5cm3 nCE
 Class 2
 maximal CE resection
  A: complete CE resection 1.15 (0.78–1.23) 1.14 (0.78–1.42) 1.56 (0.64–2.13)
  i.e. residual tumor:
  0cm3 CE + > 5cm3 nCE
  B: near total CE resection
  i.e. residual tumor: 0.89 (0.44–1.31) 0.88 (0.60–1.29) 0.87 (0.57–1.31)
  ≤ 1 cm3 CE
 Post-concomitant CRT residual 
CE tumor

0.99 (0.67–1.55) 0.81 (0.58–1.45) 0.89 (0.65–1.27)

 AEF 3.88 (1.57–9.56) 4.00 
(1.52-10.00)

3.44 (1.66–7.14) 4.17 
(1.85-10.00)

3.07 (1.40–6.73) 5.88 (2.03–
16.67)

N.B. OS, overall survival; TMZ, temozolomide; CRT, chemoradiotherapy; AEF, alternating electric fields; KPS, Karnofsky performance 
status, GTR, gross total resection; STR, subtotal resection; IDH-1, isocitrate dehydrogenase-1; pMGMT, promoter region of methylguanine-
methyltransferase; CE, contrast-enhancing; nCE, non-contrast-enhancing
*Absolute residual tumor volume according to RANO resect criteria by Karschnia et al. (in Journal of Neuro-oncology, 2023)
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our understanding of the onco-biology of these tumors has 
advanced, this was not matched by clinically translatable 
therapeutic breakthroughs. In recent years, AEF has increas-
ingly gained prominence as a novel therapeutic modality 
that exploits the high dipole moments of tumor cell micro-
tubule substrate proteins tubulin and septin to elicit an anti-
mitotic effect [4–6]. The regional application of alternating 
electric fields disrupts microtubule spindle formation during 
the M phase of tumor cell division resulting in post-mitotic 
cellular stress ultimately triggering apoptosis as soon as 
24 h after AEF exposure [4, 5]. There is also evidence to 
suggest that AEF also causes immunogenic cytotoxic effects 
independent of its anti-mitotic activity. Xenograft animal 
models revealed that tumor cells exposed to AEF evoked 
the expression of proinflammatory cytokines such as IFN-β, 
induced dendritic cell maturation and leukocyte recruitment 
resulting in extensive intra-tumoral immune cell infiltration 
[31–33]. This mechanism of action is also supported clini-
cally since delayed glioblastoma regression is frequently 
observed six to ten months after starting AEF therapy and 
this deferred oncologic effect is consistent with immune-
mediated cell death [34]. 

As global approvals for AEF by healthcare regulatory 
agencies rise, there is a need for real-world evidence to 
justify its provision, especially when the financial costs for 
this therapy are considerable [35]. Ever since the EF-14 
RCT concluded the effectiveness of AEF + CRT for newly-
diagnosed glioblastoma, six independent real-world cohort 
studies attempted to validate its therapeutic role [6, 12, 13, 
15–17, 19]. All utilised conventional adjusted regression 
modelling methods to identify control group subjects and 
the overwhelming majority were single-institution studies 
with one describing 6-monthly survival rates instead of OS 
duration [12]. Five of the six studies reported a significant 
mOS survival benefit for AEF + CRT patients ranging from 
5.7 to 6.9 months [13, 15–17, 19]. A subsequent meta-analy-
sis of these independent post-approval studies demonstrated 
a pooled improvement in mOS of 5.2 months (22.6 months 
versus 17.4 months), but also remarked notable differences 
between AEF + CRT and control group patients across sev-
eral prognostic factors in particular with regard to age, 
pMGMT methylation status and EOR [11]. Our review was 
not only a multi-center study, but also adopted a relatively 
more rigorous control cohort selection process by propen-
sity score matching. Our observations corroborate previ-
ous findings where OS was increased by 7.0 months and 
after adjusting for IDH-1 mutation and pMGMT methyla-
tion, was further extended to 8.5 months. Propensity-score 
analysis served to reduce selection bias by combining mul-
tiple covariates into a single score to control for confound-
ers and accounted for the conditional probability of AEF 
treatment selection. This quasi-experimental observational 

Discussion

It has been two decades since the introduction of temozolo-
mide chemoradiotherapy as standard first-line treatment 
for patients with WHO grade 4 astrocytomas. Although 

Table 3 Predictors for overall survival among AEF + CRT patients
Univariate 
analysis

Multi-
variate 
analysis

OR (95% CI) aOR 
(95% CI)

Patient-factors
 Gender
  Male 2.13 (0.97–4.55)
 Age ≥ 65 years 0.93 (0.36–2.44)
 Preoperative KPS ≥ 80 0.72 (0.32–1.62)
 Post-concomitant CRT KPS ≥ 80 0.78 (0.38–1.79)
Tumor-factors
 IDH-1 mutant 0.19 (0.03–1.41)
 pMGMT methylated 0.67 (0.31–1.43)
Treatment-factors
 Supramaximal or maximal CE 0.63 (0.30–1.32)
 tumor resection*
 Post-concomitant CRT residual 
CE tumor

0.71 (0.55–1.23)

 CRT-to-AEF ≤ 30 days 0.68 (0.31–1.49)
 Resection-to-AEF ≤ 120 days 0.86 (0.37-2.00)
 AEF compliance ≥ 60% 0.32 (0.10–0.96) 0.31 

(0.10–
0.96)

N.B. CRT, chemoradiotherapy; AEF, alternating electric fields; KPS, 
Karnofsky performance status, GTR, gross total resection; IDH-1, 
isocitrate dehydrogenase-1; pMGMT, promoter region of methylgua-
nine-methyltransferase
*Absolute residual tumor volume according to RANO resect criteria 
by Karschnia et al. (in Journal of Neuro-oncology, 2023)

Fig. 4 Kaplan-Meier survival analysis demonstrating a mean monthly 
alternating electric fields therapy compliance ≥ 60% was an inde-
pendent predictor for overall survival. N.B. AEF, alternating electric 
fields; IDH-1, isocitrate dehydrogenase-1, pMGMT, promoter region 
of methylguanine-methyltransferase
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A number of preclinical studies have described the mecha-
nistic effects of AEF at the cellular level, but there is a lack 
of understanding of its influence on the tumor microenvi-
ronment. Since therapy requires patients to undergo regular 
full scalp shaving, treatment for a substantial portion of the 
day and being connected to a cumbersome device, perceived 
detrimental concerns for QoL may have dissuaded clini-
cians, patients and their caregivers. Nevertheless, several 
studies have confirmed that health-related QoL assessments 
were not adversely affected by the addition of AEF therapy 
and could even improve as patients survive longer [48–50]. 

The cost of AEF therapy is a prominent barrier to adop-
tion and there is a general reluctance to bear the heavy finan-
cial burdens of this non-curative treatment in exchange for 
a modest increase in survival. Four studies have evaluated 
the cost-effectiveness of AEF therapy reviewing patient 
cohorts managed in the US, France and China [51–54]. 
Largely dependent on the willingness-to-pay threshold 
and the incremental cost-effectiveness ratio that varies 
with each country, two French studies concluded that AEF 
therapy was not cost-effective, but the remaining studies 
observed otherwise [51, 53]. Determining the value of anti-
cancer therapies especially for uncommon tumors such as 
glioblastoma is complex and requires a degree of flexible 
fiscal jurisprudence. For example, although acknowledg-
ing that TMZ CRT is not cost-effective, health systems of 
low-and middle-income countries continue to routinely pre-
scribe standard treatment [55, 56]. Regulatory authorities 
not only rely on the highest level of evidence offered by 
RCTs, but also frequently refer to real-world study evidence 
to evaluate treatment feasibility for broader patient popu-
lations and individual societal expectations. Value frame-
works, proposed by the American Society of Oncology and 
the European Society for Medical Oncology respectively, 
were introduced to better inform policymakers on public 
healthcare budgeting decisions [57, 58]. Such frameworks 
are multi-faceted assessments that evaluate net health ben-
efits by reviewing event-free survival, QoL and treatment 
toxicity for the purpose of ranking the clinically meaning-
ful benefits of novel anti-cancer therapies. Comparable 
reviews led to national insurance programs reimbursing 
AEF therapy for selected patients in the US, Japan, Austria, 
Germany, France, Sweden and Israel. Given the rarity of 
glioblastoma in Hong Kong with a stable incidence of 1: 
100 000 adult population, after a similarly rigorous evalua-
tion of the impact AEF therapy on local patient survival and 
its adverse effects, the Hong Kong government eventually 
agreed to subsidize treatment for newly-diagnosed patients 
[1]. As competing medical products come to market and 
as the technology continues to evolve, such as implantable 
intracranial AEF or oncomagnetic devices that are founded 

study design was adopted since we had access to a com-
prehensive clinically-annotated central glioma registry with 
which we could review real-world data [1, 36]. One prin-
cipal strength of using such data is its reflection of routine 
patient care, covering a broad spectrum of the patient popu-
lation, offering greater generalizability and external valida-
tion of clinical trial findings [37]. Using propensity-score 
analysis has gained increasing popularity in the last decade 
for cancer intervention research with the wider accessibility 
of databases such as the Surveillance, Epidemiology, and 
End Results-Medicare (SEER-Medicare) and the National 
Cancer Data Base (NCDB) [38]. 

Our findings support the conclusions of the EF-14 trial 
indicating that AEF + CRT confers a significant increase in 
OS for newly-diagnosed WHO grade 4 astrocytoma regard-
less of age, functional performance, EOR and pMGMT 
methylation status [6]. A survival benefit in excess of eight 
months was observed, the longest reported in the biomedical 
literature and the original EF-14 RCT, a phenomenon sel-
dom observed from real-world studies. Although selection 
bias may have contributed to this, a review of the unmatched 
cohorts between the two groups revealed the only signifi-
cant difference was functional performance. Otherwise, the 
matched prognostic factor profile of our study patients was 
comparable to that of a typical WHO grade 4 astrocytoma 
patient in Hong Kong [1]. These results support the inclu-
sion of AEF as a first-line SOC option for several clinical 
practice guidelines including the American Society of Clini-
cal Oncology, the Society for Neuro-oncology and the Chi-
nese Brain Cancer Association [39–42]. 

In spite of regulatory approval, considerable scepticism 
towards AEF therapy exists with fewer than 12% of patients 
receiving such treatment and among neuro-oncologists, only 
30% viewed it as a definitive component of SOC [43]. Sev-
eral reasons account for this lack of enthusiasm and can be 
generally classified in relation to the design of the original 
EF-14 trial, inadequate understanding of the mechanisms 
of action, perceived effects on quality-of-life (QoL) and the 
current prohibitive costs of treatment [44, 45]. The EF-14 
RCT was an open-labelled study that did not utilize a sham 
device and its primary endpoint was PFS which can be dif-
ficult to determine. Subjects were randomized later in their 
course at a median interval of 3.8 months after diagnosis 
and those that experienced rapid progression were excluded 
(8%, 82/1019). Early randomization is crucial, as the RTOG 
0525 RCT observed that a time lag between registration 
and trial arm assignment resulted in an almost two-month 
difference in OS [46]. A systematic review of the biomedi-
cal literature noted that rapid early progression, defined as 
post-operative glioblastoma recurrence before the initiation 
of adjuvant CRT, occurred at a mean incidence of 46% and 
raises concerns on the generalizability of AEF therapy [47]. 
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as a result of relatively unclear clinical evidence [1]. Two 
prospective trials and one RCT of elderly glioblastoma 
patients that compared upfront TMZ alone against RT alone, 
concluded that chemotherapy was detrimental for those with 
pMGMT-unmethylated tumors without conferring a demon-
strable improvement in OS [66–68]. There are reasons to 
believe that AEF therapy should be offered to older patients. 
The EF-14 RCT recruited patients as old as 83 years old 
and a subgroup analysis of patients ≥ 65 years concluded 
that AEF therapy continued to offer a significant 3.7-month 
mOS benefit [6, 62]. Bias was also evident in the selection of 
control group subjects since patients that were not matched 
and excluded from the analysis had poorer preoperative and 
post-concomitant CRT functional performance. Another 
source of bias was the exclusion of patients that underwent 
rapid progression during or after CRT from receiving AEF 
therapy. Control group patients were selected from a regis-
try that spans from 2009 to 2023 while those that received 
additional AEF therapy were treated since 2019. This may 
have resulted in the possible introduction of confounding 
management discrepancies over this time period that influ-
enced survival. But since there was no substantial change 
in TMZ CRT standard-of-care therapy in the intervening 
years, along with the absence of any novel interventions or 
clinical trials in Hong Kong during this time, it was believed 
that the impact of this issue was minimal. A proportion of 
EOR data was retrieved from operative records reflecting a 
neurosurgeon’s assessment and not by independent evalu-
ations by early postoperative MRI. The major reason why 
we relied on such assessments was because of the absence 
of standard imaging protocols in Hong Kong where only 
two of the seven neurosurgical centres offer early postop-
erative scanning. Having neurosurgeons report on their per-
ceived EOR assessment is known to be unreliable and could 
have contributed to the shorter OS in the control group [69]. 
The Hong Kong Glioma Registry, a population-based data-
base, did not routinely document QoL and patient-reported 
outcomes measures data. These assessments would have 
provided a more nuanced assessment on AEF treatment tol-
erability. Due to the real-world nature of this study, another 
limitation was that patients were diagnosed according to the 
4th WHO classification [25]. The latest 5th edition recently 
refined the diagnosis of glioblastoma by adopting a multi-
layered integrated approach incorporating new molecular 
criteria such as TERT promoter mutation, EGFR amplifica-
tion or chromosomal 7 + gain / chromosomal 10- loss for 
IDH-1 wildtype tumors. It would have been interesting to 
determine whether certain patient subgroups diagnosed 
with “molecularly-defined” glioblastoma would have been 
more responsive to AEF therapy [16]. Due to resource 
limitations, central governmental funding to perform these 
molecular tests was only made available in our region in 

on similar therapeutic principles, it is anticipated that the 
cost of AEF will decrease with time [59, 60]. 

Our findings support prior analyses that demonstrated a 
dose-response relationship between AEF treatment and OS 
[6, 15, 61]. A review of field intensities (V/cm) and power 
densities (mW/cm3), utilizing computational dosimetry 
modelling from EF-14 trial subjects, detected positive cor-
relations with survival [61]. The original trial concluded 
that a mean monthly compliance, i.e. device usage time, of 
≥ 75% was associated with a significant improvement in sur-
vival and this extended to elderly patients of ≥ 65 years [6, 
62]. This observation was validated by only two indepen-
dent post-approval studies, but their designs dichotomized 
treatment compliance groups using a 75% cut-off threshold 
[15, 18]. A further in-depth analysis of EF-14 trial device 
usage durations identified that a minimum threshold of 50% 
resulted in longer OS [63]. We determined that a threshold 
of 60% AEF treatment compliance was an independent pre-
dictor for survival and suggests that lower cut-off device 
usage durations can still be beneficial.

Due to the nature of long-term AEF array application, it 
is understandable that a substantial proportion of patients 
experienced scalp dermatitis with studies reporting an inci-
dence of 25–53%, the majority being RTOG grade 1–2 
reactions [18, 62, 64]. Although this was the only adverse 
effect observed, its occurrence was considerably higher than 
previously reported. As a south-eastern Chinese coastal city, 
Hong Kong has a subtropical climate with warm humid 
weather for most of the year. This could have accounted for 
the notably higher proportion of patients (77%) that had this 
adverse effect. Vigilance for the occurrence of these derma-
tologic reactions and their timely management include the 
use of topical corticosteroids, oral antipruritic medication or 
the temporary cessation of AEF treatment [65]. For patients 
residing in tropical climates, additional mitigating strategies 
include applying topical aluminium chloride or glycopyrro-
late antiperspirants, trimming scalp electrode adhesive tape, 
applying moist cold compresses to affected areas as well as 
installing home air-conditioners and dehumidifiers [65]. 

A number of study limitations were identified. As this was 
a non-randomized study, the risks of bias and the overestima-
tion of treatment effects exist. However, since all data was 
prospectively collected, that real-world multi-center obser-
vations were made and propensity-score matching utilized, 
it was believed to be the only study design approach to vali-
date AEF effectiveness short of performing a RCT. Several 
sources of selection bias exist. Patients older than 70 years 
were not reviewed, but they constitute 18% of glioblastoma 
patients in the territory and it is expected to be higher as 
Hong Kong’s population increasingly ages [1]. This was 
largely due to local Hong Kong neuro-oncologist practice to 
refrain from administering chemotherapy for older patients 
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2024 and could not be retro-actively utilized for archived 
historical control group tumor tissue. As the EF-14 RCT 
and other subsequent studies reviewed patients according 
to the previous 4th WHO classification, we believed that 
the potential impact of AEF treatment on patient survival in 
light of the updated definitions would have been minimal. 
Future research should focus on reviewing the impact of 
AEF therapy in patients with unfavorable survival prognos-
tic factors such as the elderly, those with poorer functional 
performance or had rapid progression with an emphasis on 
assessing health-related QoL.

In conclusion, this first propensity-scored matched pro-
spective multi-center study observed significantly longer 
OS for newly-diagnosed WHO grade 4 astrocytoma patients 
that received AEF treatment with TMZ CRT. Regardless 
of age, functional performance, IDH-1 mutation, pMGMT 
methylation status or EOR, AEF treatment was an indepen-
dent predictor for survival. Our findings support the inclu-
sion of such treatment as first-line standard-of-care.
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