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Abstract 

Background Artificial sweeteners (AS) have been widely utilized in the food, beverage, and pharmaceutical indus-
tries for decades. While numerous publications have suggested a potential link between AS and diseases, particularly 
cancer, controversy still surrounds this issue. This study aims to investigate the association between AS consumption 
and cancer risk.

Methods Targets associated with commonly used AS were screened and validated using databases such as CTD, 
STITCH, Super-PRED, Swiss Target Prediction, SEA, PharmMapper, and GalaxySagittarius. Cancer-related targets were 
sourced from GeneCards, OMIM, and TTD databases. AS-cancer targets were identified through the intersection 
of these datasets. A network visualization (‘AS-targets-cancer’) was constructed using Cytoscape 3.9.0. Protein–protein 
interaction analysis was conducted using the STRING database to identify significant AS-cancer targets. GO and KEGG 
enrichment analyses were performed using the DAVID database. Core targets were identified from significant targets 
and genes involved in the ‘Pathways in cancer’ (map05200). Molecular docking and dynamics simulations were 
employed to verify interactions between AS and target proteins. Pan-cancer and univariate Cox regression analyses 
of core targets across 33 cancer types were conducted using GEPIA 2 and SangerBox, respectively. Gene chip datasets 
(GSE53757 for KIRC, GSE21354 for LGG, GSE42568 for BRCA, and GSE46602 for PRAD) were retrieved from the GEO 
database, while transcriptome and overall survival data were obtained from TCGA. Data normalization and identifi-
cation of differentially expressed genes (DEGs) were performed on these datasets using R (version 4.3.2). Gene Set 
Enrichment Analysis (GSEA) was employed to identify critical pathways in the gene expression profiles between nor-
mal and cancer groups. A cancer risk prognostic model was constructed for key targets to further elucidate their 
significance in cancer initiation and progression. Finally, the HPA database was utilized to investigate variations 
in the expression of key AS-cancer target proteins across KIRC, LGG, BRCA, PRAD, and normal tissues.

Results Seven commonly used AS (Aspartame, Acesulfame, Sucralose, NHDC, Cyclamate, Neotame, and Sac-
charin) were selected for study. A total of 368 AS-cancer intersection targets were identified, with 48 notable AS-
cancer targets, including TP53, EGFR, SRC, PIK3R1, and EP300, retrieved. GO biological process analysis indicated 
that these targets are involved in the regulation of apoptosis, gene expression, and cell proliferation. Thirty-five core 
targets were identified from the intersection of the 48 significant AS-cancer targets and genes in the ’Pathways 
in cancer’ (map05200). KEGG enrichment analysis of these core targets revealed associations with several cancer 
types and the PI3K-Akt signaling pathway. Molecular docking and dynamics simulations confirmed interactions 
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Introduction
Artificial sweeteners (AS) refer to a group of low-calo-
rie, calorie-free, or non-nutritive additives employed as 
sugar substitutes in the food, beverage, and pharmaceuti-
cal industries, experiencing a global rise in consumption 
annually [1]. Prolonged use of these non-sugar sweeten-
ers is strongly linked to obesity, type 2 diabetes (T2D), 
cancer, cardiovascular diseases (CVD), and mortality 
[2]. Currently, the World Health Organization (WHO) 
does not explicitly enumerate the types and species of 
AS approved for use in its latest guidelines [3]. However, 
commonly recognized and widely accepted AS deemed 
safe include aspartame, saccharin, sucralose, acesulfame 
K, neotame, cyclamate, and stevia [1, 3]. The types of AS 
approved and commonly used vary between countries, a 
phenomenon influenced by factors such as the author-
ized types of artificial sweeteners in each country, obesity 
rates, and dietary preferences.

The use of artificial sweeteners (AS) spans nearly a cen-
tury, owing to their no or low caloric and intense sweet-
ness (ranging from 200 to 13,000 times that of sucrose), 
making them highly sought after by dieters and diabetes 
patients [4–6]. Artificial sweeteners were initially intro-
duced into the food industry in the 1950s. However, since 
the 2000s, there has been an exponential rise in their con-
sumption [7]. As of August 2020, approximately 250,000 
tons of AS had been consumed globally, with China, 
Japan, the United States, Germany, France, and the 
United Kingdom ranking among the largest consumers. 
Forecasts indicate that the global AS market will expand 
from $7.2 billion in 2022 to $9.7 billion by 2028, repre-
senting a compound annual growth rate of 5.05% [8].

In Europe, there are 19 approved artificial sweeten-
ers (AS) [9]. In Spain, the most commonly consumed 
AS include acesulfame K, aspartame, cyclamate, and 
sucralose [10]. In the United States, six high-intensity 

sweeteners are FDA-approved as food additives: saccha-
rin, aspartame, acesulfame potassium (Ace-K), sucra-
lose, neotame, and advantame [11]. The Food and Drug 
Administration (FDA) has received Generally Recog-
nized as Safe (GRAS) notices for two additional types 
of high-intensity sweeteners: certain steviol glycosides 
obtained from the leaves of the stevia plant (Stevia rebau-
diana) and extracts from Siraitia grosvenorii Swingle 
fruit, also known as Luo Han Guo or monk fruit [11].

Currently, China has approved 20 types of sweeteners 
for use, many of which are also authorized for interna-
tional and regional use, including aspartame, acesulfame, 
saccharin, and cyclamate [2, 12]. The Joint Expert Com-
mittee on Food Additives (JECFA), under the United 
Nations Food and Agriculture Organization (FAO) and 
the WHO, is the foremost authority globally for evalu-
ating the safety of food additives. JECFA conducts com-
prehensive toxicity assessments, encompassing acute, 
subchronic, mutagenicity, carcinogenicity, reproductive 
toxicity, chronic toxicity, and metabolic pathways of each 
sweetener under consideration for approval. These rigor-
ous evaluations lead to the establishment of Acceptable 
Daily Intake (ADI) values, which factor in variables such 
as race, gender, and age. JECFA asserts that normal con-
sumption of sweeteners within ADI limits poses no safety 
risks. Adhering to relevant regulatory standards ensures 
that sweeteners do not pose health hazards when used 
appropriately [3, 12]. Several food and beverage products 
have been found to contain excessive levels of AS, and 
researches indicate that the consumption of these sweet-
eners may lead to various health issues [13–15].

Obesity and weight gain have emerged as significant 
global health concerns [2, 16]. The WHO recommends 
limiting sugar intake to less than 10% of daily caloric 
intake to manage body weight and prevent obesity 
[17]. However, large cohort studies indicated that high 

between AS and these core targets. HSP90AA1 was found to be highly expressed across the 33 cancer types, 
while EGF showed the opposite trend. Univariate Cox regression analysis demonstrated strong associations of core 
targets with KIRC, LGG, BRCA, and PRAD. DEGs of AS-cancer core targets across these four cancers were analyzed. 
GSEA revealed upregulated and downregulated pathways enriched in KIRC, LGG, BRCA, and PRAD. Cancer risk prog-
nostic models were constructed to elucidate the significant roles of key targets in cancer initiation and progression. 
Finally, the HPA database confirmed the crucial function of these targets in KIRC, LGG, BRCA, and PRAD.

Conclusion This study integrated data mining, machine learning, network toxicology, molecular docking, molecular 
dynamics simulations, and clinical sample analysis to demonstrate that AS increases the risk of kidney cancer, low-
grade glioma, breast cancer, and prostate cancer through multiple targets and signaling pathways. This paper pro-
vides a valuable reference for the safety assessment and cancer risk evaluation of food additives. It urges food safety 
regulatory agencies to strengthen oversight and encourages the public to reduce consumption of foods and bever-
ages containing artificial sweeteners and other additives.

Keywords Artificial sweetener, Cancer, Core targets, Molecular dynamics simulation, Machine learning, Network 
toxicology, Pathways in cancer
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consumption of AS is associated with increased risks of 
all-cause mortality, cardiovascular diseases, coronary 
artery disease, cerebrovascular events, and cancer [18, 
19]. The growing body of research suggests a significant 
correlation between prolonged AS consumption and 
the development of various diseases. Furthermore, aside 
from the heightened risk of cardiovascular events, AS 
have been shown to elevate the likelihood of diabetes 
mellitus [5, 6, 13, 20], inflammatory bowel disease [21–
23], glucose intolerance [24, 25], hypertension [26, 27], 
stroke [28, 29], neurotoxicity [30, 31], obesity [26, 32, 33], 
and cancers [14, 34, 35].

Recent publications have linked artificial sweetener 
(AS) consumption with increased cancer risks [14]. The 
first report, published in the 1980s, revealed an asso-
ciation between AS and bladder cancer [35–37]. Subse-
quently, several other cancers have also been reported to 
correlate with AS consumption. An animal study using 
Sprague–Dawley rats tested the carcinogenic effects of 
aspartame at doses close to the acceptable daily intake 
for humans. The results demonstrate that lifelong expo-
sure to aspartame, beginning in fetal life, increases 
carcinogenic effects, resulting in higher incidences of 
lymphomas/leukemias in both male and female rats, and 
mammary cancer in females [38, 39]. The large French 
population-based cohort, NutriNet-Santé (2009–2021), 
which included 102,865 adults with a median follow-
up time of 7.8  years, found that compared to non-
consumers, those who consumed higher amounts of 
artificial sweeteners had a greater risk of overall cancer 
(n = 3358 cases; hazard ratio = 1.13 [95% CI 1.03 to 1.25], 
P-trend = 0.002). Increased risks were also observed for 
breast cancer and obesity-related cancers [19].

A recent NHANES study reported that higher absolute 
saccharin intake was associated with an increased risk of 
all-cause mortality (hazard ratio [HR]: 1.41, 95% CI 1.05, 
1.90), CVD mortality (HR: 1.93, 95% CI 1.15, 3.25), and 
cancer mortality (HR: 2.26, 95% CI 1.10, 4.45) among 
diabetic and pre-diabetic individuals. For the over-
weight population, elevated saccharin intake was linked 
to a heightened risk of cancer mortality (HR: 7.369, 95% 
CI 2.122, 25.592). The study concluded substantial risks 
associated with increased saccharin intake for all-cause 
mortality, CVD mortality, and cancer mortality [40]. 
Sucralose has been reported to increase colorectal cancer 
risk in a murine model, accompanied by gut microbiota 
dysbiosis, impaired inactivation of digestive proteases, 
damage to the gut barrier, and heightened inflammation 
[41].

Large cohort studies, epidemiological research, and 
animal experiments have shown a strong association 
between AS and the risk of various types of cancer. Cur-
rently, the debate over whether artificial sweetener (AS) 

cause cancer is intensifying. However, the existing exper-
imental methods used to evaluate the safety and carci-
nogenicity of AS, including epidemiological and animal 
studies, face several limitations. These include uncer-
tainty in establishing causation, the presence of con-
founding factors and biases, differences between animal 
models and human biology, unreasonable experimen-
tal conditions and doses, among others [42]. This paper 
aims to employ data mining, machine learning, network 
toxicology, molecular docking, and molecular dynam-
ics simulation techniques to comprehensively assess the 
carcinogenic potential of AS, providing valuable refer-
ences for their safety evaluation. In this study, after rig-
orous screening, eight key core targets were identified 
and found to be strongly associated with the carcinogenic 
effects of AS. The flowchart for this study is illustrated in 
Fig. 1.

Materials and methods
Target collection of artificial sweeteners (AS)
Based on the commonly used types of AS in China, the 
United States, the European Union, and other nations, 
seven specific AS have been chosen for further investiga-
tion. These include ‘Aspartame,’ ‘Acesulfame,’ ‘Sucralose,’ 
‘NHDC,’ ‘Cyclamate,’ ‘Neotame,’ and ‘Saccharin’ respec-
tively. Detailed information is provided in Table 1.

Seven commonly used AS were chosen as keywords 
for target selection in the Comparative Toxicogenom-
ics Database (CTD, https:// ctdba se. org/) [43], STITCH 
(http:// stitch. embl. de/) [44], and Super-PRED (https:// 
predi ction. chari te. de/) [45] databases. The isomeric 
SMILES and sdf molecular formats of these seven AS 
were obtained from PubChem (https:// pubch em. ncbi. 
nlm. nih. gov) database. Subsequently, the targets associ-
ated with these AS were searched using Swiss Target Pre-
diction (http:// www. swiss targe tpred iction. ch) [46] and 
SEA (https:// sea. bkslab. org/) [47] databases, employing 
the isomeric SMILES. The AS sdf molecular format was 
converted to mol2 format using Chem3D software, and 
the corresponding targets were identified via PharmMap-
per (https:// lilab- ecust. cn/ pharm mapper/ index. html) 
[48] and GalaxySagittarius (https:// galaxy. seokl ab. org/ 
cgi- bin/ submit. cgi? type= SAGIT TARIUS) [49] databases. 
The species selected for analysis was ‘Homo sapiens’, and 
the criteria for selection were as follows: in Swiss Target 
Prediction, ‘Probability > 0.01’; in Super-PRED, ‘Probabil-
ity ≥ 50%’; and in PharmMapper, ‘Norm Fit ≥ 0.7’.

The targets of the seven AS, obtained from various 
databases, were amalgamated to ascertain the individual 
targets for each sweetener. Subsequently, the respective 
targets of these seven sweeteners were merged to derive 
the collective targets for AS, facilitating subsequent 
research. A bioinformatics platform (https:// www. bioin 

https://ctdbase.org/
http://stitch.embl.de/
https://prediction.charite.de/
https://prediction.charite.de/
https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
http://www.swisstargetprediction.ch
https://sea.bkslab.org/
https://lilab-ecust.cn/pharmmapper/index.html
https://galaxy.seoklab.org/cgi-bin/submit.cgi?type=SAGITTARIUS
https://galaxy.seoklab.org/cgi-bin/submit.cgi?type=SAGITTARIUS
https://www.bioinformatics.com.cn/
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Fig. 1 Flowchart of this study
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forma tics. com. cn/) was utilized to generate Venn dia-
grams depicting the overlapping targets among different 
AS.

Cancer‑related target collection
The pertinent target associated with the keyword "cancer" 
was retrieved, focusing on the biological species ‘Homo 
sapiens,’ across the GeneCards (https:// www. genec ards. 
org/) [50], OMIM (https:// www. omim. org/) [51], and 
TTD (https:// db. idrbl ab. net/ ttd/) [52] databases.

GeneCards, the human gene database, allows research-
ers to efficiently explore and correlate a vast array of 
human genes, diseases, variants, proteins, cells, and 
biological pathways. OMIM is intended for use primar-
ily by physicians and other professionals concerned 
with genetic disorders, by genetics researchers, and by 
advanced students in science and medicine. TTD is a 
database providing information about the known and 
explored therapeutic protein and nucleic acid targets, 
the targeted disease, pathway information and the corre-
sponding drugs directed at each of these targets.

In the GeneCards database, targets were filtered using 
a criterion of ‘Relevance score ≥ 15’. Cancer-related tar-
gets were then compiled by consolidating all retrieved 
targets from the GeneCards, OMIM, and TTD databases, 
utilizing the Hiplot (ORG) plotting website (https:// hip-
lot. cn/).

Artificial sweetener‑cancer target acquisition and protein–
protein interaction (PPI) network construction
The intersecting targets between AS and cancer were 
identified using Venny 2.1 (https:// bioin fogp. cnb. csic. es/ 
tools/ venny/) software. These intersection targets were 
then subjected to analysis of target protein interactions 
using the STRING database (https:// cn. string- db. org/) 
[53], with a confidence coefficient set at ≥ 0.995 as the 
screening threshold. The STRING database integrates 
both known and predicted protein associations, includ-
ing physical interactions and functional relationships.

Following the retrieval of PPI results, non-essential 
targets were filtered out, leading to the creation of a tar-
get protein interaction map. The resulting interaction 
network, provided in TSV format, was imported into 
Cytoscape 3.9.0 software (https:// cytos cape. org/) [54] 
for visualization of target protein interactions. Cytoscape 
provides a range of network analysis tools that calcu-
late various network attributes, such as Degree, Close-
ness Centrality, and Betweenness Centrality. These tools 
help assess the significance and relevance of network 
connections.

Utilizing the ‘analyze network’ module within 
Cytoscape 3.9.0, the topological attributes of target pro-
tein interactions were computed, yielding attribute data 
for target proteins. Selection criteria were defined as fol-
lows: Degree ≥ double the median value, Betweenness 
Centrality ≥ the median value, and Closeness Central-
ity ≥ the median value [55], thereby identifying signifi-
cant targets associated with AS and cancer. The greater 
the network connectivity degree, the more important the 
node is within the network. Similarly, the higher the val-
ues of the two topological measures, "Betweenness Cen-
trality" and "Closeness Centrality," the more significant 
the network node.

GO and KEGG enrichment analysis
The targets associated with AS and cancer were imported 
into the DAVID platform (https:// david. ncifc rf. gov/) [56] 
for Gene Ontology (GO) [57] function and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) signaling path-
way enrichment analysis, focusing on the species ‘Homo 
sapiens’. The DAVID platform offers a suite of powerful 
tools that enable researchers to explore large gene lists 
from multiple biological perspectives, extracting associ-
ated biological insights to the fullest extent.

The analyzed data regarding Biological Process (BP), 
Cellular Component (CC), and Molecular Function (MF) 
were obtained and visually represented using a bioinfor-
matics platform (https:// www. bioin forma tics. com. cn/). 
The top 10 terms for BP, CC, and MF were selected based 
on their P-Value, arranged from lower to higher, to gen-
erate the GO bar chart. Similarly, the top 10 enriched 
terms from the KEGG analysis were visualized using the 
SangerBox platform (http:// sange rbox. com/) to produce 
the KEGG pathway diagram.

Artificial sweetener‑cancer core target screening 
and network construction
All genes pertaining to the ‘pathways in cancer’ 
(map05200) were acquired from the KEGG database. 
The core targets of AS-cancer were determined by inter-
secting the significant target genes of AS-cancer with 
the genes within the map05200 pathway. Subsequently, 

Table 1 Detailed information on commonly used artificial 
sweeteners

NO Molecular Name CAS ID Formulas MW(g/moL)

1 Aspartame 22,839–47-0 C14H18N2O5 294.3

2 Acesulfame 33,665–90-6 C4H5NO4S 163.15

3 Sucralose 56,038–13-2 C12H19Cl3O8 397.6

4 NHDC 20,702–77-6 C28H36O15 612.6

5 Cyclamate 100–88-9 C6H13NO3S 179.24

6 Neotame 165,450–17-9 C20H30N2O5 378.5

7 Saccharin 81–07-2 C7H5NO3S 183.19

https://www.bioinformatics.com.cn/
https://www.genecards.org/
https://www.genecards.org/
https://www.omim.org/
https://db.idrblab.net/ttd/
https://hiplot.cn/
https://hiplot.cn/
https://bioinfogp.cnb.csic.es/tools/venny/
https://bioinfogp.cnb.csic.es/tools/venny/
https://cn.string-db.org/
https://cytoscape.org/
https://david.ncifcrf.gov/
https://www.bioinformatics.com.cn/
http://sangerbox.com/
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an AS-Target-Cancer network was established using 
Cytoscape 3.9.0 software. Concurrently, the PPI of the 
AS-cancer core targets was examined via the STRING 
database, and the outcomes were visualized using 
Cytoscape 3.9.0 software.

Molecular docking and visualization
To further investigate potential interactions between the 
core targets and artificial sweeteners (AS), the core tar-
gets were retrieved from the UniProt database, filtered 
by "Reviewed" and "Human" entries. The corresponding 
target entries were then copied and searched in the RCSB 
PDB database (https:// www. rcsb. org/) [58]. Based on 
Homo sapiens, near full-length sequences, the number of 
unique ligands, and low-resolution methods, the corre-
sponding target protein crystal structures were selected 
as macromolecules.

The 2D structures of seven sweeteners were obtained 
from the PubChem database as small molecules. In the 
preliminary stage, Chem3D software was used to opti-
mize the small molecule structures, which were then 
saved in mol2 format. For macromolecules, water mol-
ecules and extraneous residues were removed using 
PyMOL, and the structures were converted to pdb for-
mat. Both macromolecules and small molecules were 
processed using AutoDockTools 1.5.7 and converted into 
pdbqt format.

Subsequently, molecular docking between artificial 
AS molecules and the core targets was carried out using 
Autodock Vina (https:// vina. scrip ps. edu/) software (Ver-
sion 1.5.7) [59, 60].

The AS-core target associations were visualized using 
PyMOL (version 2.2) (http:// www. pymol. org/2/), follow-
ing the parameters previously outlined in our report [55]. 
Complexes with low binding energy and favorable con-
formations were selected for visualization in PyMOL to 
assess hydrogen bonds.

Additionally, 2D molecular docking interactions were 
conducted using the PROTEINS PLUS (https:// prote 
ins. plus/) web tools [61]. Strong interactions between 
the core targets and AS were observed when the affin-
ity score was  ≤ − 5.0 kcal/mol [62]. The binding energy 
data obtained from the molecular docking results were 
imported into the GENESCLOUD website (https:// www. 
genes cloud. cn/ chart/ Chart Overv iew) to generate multi-
axis bubble heat maps.

Molecular dynamics simulation
We conducted molecular dynamics (MD) simulations 
using GROMACS (Version 2020.6) to evaluate the bind-
ing patterns of the docking complexes [63]. The Amber 
GAFF2 force field was utilized to model the behavior of 
artificial sweetener (AS) molecules, while the FF14SB 

protein force field was employed for simulating the 
molecular dynamics [64, 65]. The binding complex was 
immersed in a 10 × 10x10Å cubic box filled with TIP3P 
water molecules and neutralized with  Na+ and  Cl− ions.

The energy of the binding complex was minimized first 
using the steepest descent method and subsequently with 
the conjugate gradient method. Next, the thermody-
namic temperature of the binding complex was gradually 
increased from 0 to 310 K under constant volume and a 
uniform heating rate. Subsequently, a 200 ps NVT (con-
stant Number of particles, Volume, and Temperature) 
simulation was executed after the binding complex stabi-
lized at a thermodynamic temperature of 310 K.

Upon pre-equilibration, an extended molecular dynam-
ics simulation lasting 200  ns was performed employing 
the Nosé-Hoover algorithm-based Parrinello-Rahman 
constant-pressure barostat and V-rescale thermal bath 
method.

The Nosé-Hoover algorithm-based Parrinello-Rahman 
constant-pressure barostat is a standard method for 
maintaining temperature control in the NVT ensemble, 
making it suitable for equilibrium state simulations. The 
V-rescale thermostat, which uses velocity scaling with 
random noise terms, ensures proper canonical ensem-
ble behavior, similar to Berendsen coupling but provid-
ing more accurate statistical properties. After molecular 
simulations, periodic correction of the binding complex 
is performed to account for potential numerical drift 
during the simulation.

Subsequent to the molecular simulation, the binding 
complex underwent periodic corrections, and the Root 
Mean Square Fluctuation (RMSF), Root Mean Square 
Deviation (RMSD), and Radius of Gyration (Rg) of the 
AS-target were calculated.

RMSF provides insight into the flexibility of different 
protein regions, with lower values indicating greater sta-
bility in those regions. RMSD measures the overall struc-
tural deviation of the protein over time, with lower values 
signifying a more stable structure. A smaller Rg suggests 
a more compact protein conformation, which may cor-
relate with increased stability and is potentially linked to 
the binding affinity and specificity of AS to its target [66].

DuIvyTools was used to generate the visualization 
(https:// duivy tools. readt hedocs. io/ en/ latest/ DIT. html).

Pan‑cancer analysis of AS‑cancer core targets
Retrieve the expression data of AS-cancer core targets 
across 33 types of cancer by importing them into the 
GEPIA 2 website (http:// gepia2. cancer- pku. cn/# index) 
[67]. Next, input this expression data into the CNSkno-
wall website (https:// cnskn owall. com/#/ HomeP age) to 
generate a heatmap. The full names and abbreviations for 
the 33 types of cancer can be found in Table 2.

https://www.rcsb.org/
https://vina.scripps.edu/
http://www.pymol.org/2/
https://proteins.plus/
https://proteins.plus/
https://www.genescloud.cn/chart/ChartOverview
https://www.genescloud.cn/chart/ChartOverview
https://duivytools.readthedocs.io/en/latest/DIT.html
http://gepia2.cancer-pku.cn/#index
https://cnsknowall.com/#/HomePage
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Univariate cox regression analysis of AS‑cancer core 
targets
The AS-cancer core targets were submitted to the 
SangerBox website for univariate Cox regression analysis, 

resulting in the acquisition of differential data. Subse-
quently, the CNSknowall website was utilized to generate 
a heatmap visualizing the results of the univariate Cox 
regression analysis.

Univariate Cox regression analysis is used to assess the 
association between each feature and survival individu-
ally. The purpose of employing univariate Cox regression 
here is to preliminarily identify cancers associated with 
the core target for further investigation. In the subse-
quent analysis of the four selected cancer studies, we 
controlled for potential confounding factors using multi-
variate analysis, LASSO regression, and other methods.

Data mining from GEO and TCGA databases
Following the integration of enriched KEGG pathways 
and univariate Cox regression analysis results concern-
ing AS-cancer core targets, we selected renal clear cell 
carcinoma, low-grade glioma, breast cancer, and prostate 
cancer for further investigation. We sequentially pro-
cured gene chip datasets for these cancers from the GEO 
database (https:// www. ncbi. nlm. nih. gov/ geo/) [68] as fol-
lows: GSE53757 for renal clear cell carcinoma, GSE21354 
for low-grade glioma, GSE42568 for breast cancer, and 
GSE46602 for prostate cancer. Detailed information 
about the datasets is listed in Table 3. Additionally, tran-
scriptome and overall survival data for these cancers 
were obtained from the TCGA database (https:// portal. 
gdc. cancer. gov/), namely TCGA-KIRC for renal clear cell 
carcinoma, TCGA-LGG for low-grade glioma, TCGA-
BRCA for breast cancer, and TCGA-PRAD for pros-
tate cancer. The respective patient counts were 533 for 
KIRC, 510 for LGG, 1081 for BRCA, and 501 for PRAD. 
These datasets will be utilized in constructing prognosis 
models.

Screening of differentially expressed genes (DEGs) in GEO 
datasets and construction of target‑pathway network
We retrieved all targets associated with “hsa05211: Renal 
cell carcinoma,” “hsa05214: Glioma,” “hsa05224: Breast 
cancer,” and “hsa05215: Prostate cancer” from the KEGG 
database. Data normalization and identification of DEGs 
were performed on four GEO datasets (GSE53757, 
GSE21354, GSE42568, and GSE46602) using the limma 
package in R (version 4.3.2) [69]. The screening criteria 

Table 2 Full names and abbreviations of cancer types

Cohort Full name

TCGA-ACC Adrenocortical carcinoma

TCGA-BLCA Bladder Urothelial Carcinoma

TCGA-BRCA Breast invasive carcinoma

TCGA-CESC Cervical squamous cell carcinoma and endocervical 
adenocarcinoma

TCGA-CHOL Cholangiocarcinoma

TCGA-COAD Colon adenocarcinoma

TCGA-DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma

TCGA-ESCA Esophageal carcinoma

TCGA-GBM Glioblastoma multiforme

TCGA-HNSC Head and Neck squamous cell carcinoma

TCGA-KICH Kidney Chromophobe

TCGA-KIRC Kidney renal clear cell carcinoma

TCGA-KIRP Kidney renal papillary cell carcinoma

TCGA-LAML Acute Myeloid Leukemia

TCGA-LGG Brain Lower Grade Glioma

TCGA-LIHC Liver hepatocellular carcinoma

TCGA-LUAD Lung adenocarcinoma

TCGA-LUSC Lung squamous cell carcinoma

TCGA-MESO Mesothelioma

TCGA-OV Ovarian serous cystadenocarcinoma

TCGA-PAAD Pancreatic adenocarcinoma

TCGA-PCPG Pheochromocytoma and Paraganglioma

TCGA-PRAD Prostate adenocarcinoma

TCGA-READ Rectum adenocarcinoma

TCGA-SARC Sarcoma

TCGA-STAD Stomach adenocarcinoma

TCGA-SKCM Skin Cutaneous Melanoma

TCGA-TGCT Testicular Germ Cell Tumors

TCGA-THCA Thyroid carcinoma

TCGA-THYM Thymoma

TCGA-UCEC Uterine Corpus Endometrial Carcinoma

TCGA-UCS Uterine Carcinosarcoma

TCGA-UVM Uveal Melanoma

Table 3 GEO chip datasets

GEO Tissue Platform Normal Tumor References

GSE53757 Kidney GPL570 72 72 Von roemeling CA et al. (2014)

GSE21354 Brain GPL570 4 14 Liu Z et al. (2011)

GSE42568 Breast GPL570 17 104 Clarke C et al. (2013)

GSE46602 Prostate GPL570 14 36 Mortensen MM et al. (2015)

https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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included p < 0.05 and an absolute value of fold change 
greater than 2 (|  Log2 Fold Change |> 1) to identify both 
up-regulated and down-regulated genes. A gradient vol-
cano map was generated using an online tool (http:// 
bioin foapp. com: 3838/ tools/).

The screening criteria depended on KEGG path-
way targets. We intersected cancer targets with artifi-
cial sweetener targets to obtain the intersection target 
termed ‘AS-cancer target.’ This target set was imported 
into the STRING database, with a confidence coefficient 
set to 0.90. Subsequently, free targets were removed, 
and the target-pathway network was constructed using 
Cytoscape 3.9.0.

Gene set enrichment analysis (GSEA)
GSEA is employed to evaluate whether a predefined gene 
set exhibits statistically significant differences between 
two biological phenotypes, such as a control group 
and a cancer group, and to pinpoint critical pathways 
within the overall gene expression matrix [70]. Initially, 
all sequenced genes are ranked based on their differen-
tial factors, from largest to smallest. Subsequently, the 
input gene set is ranked to assess its enrichment across 
various biological functions and signaling pathways. The 
KEGG gene set was selected for screening based on a 
significance threshold of p < 0.05. The ‘limma,’ ‘org.Hs.eg.
db,’ ‘clusterProfiler,’ and ‘enrichplot’ packages in the R 
(version 4.3.2) are utilized to visualize four cancer data-
sets [69]. The GSEA results include enrichment scores 
(ES) for the top 5 and bottom 5 biological processes and 
KEGG pathways. The enrichment score (ES), normalized 
enrichment score (NES), P-value, and adjusted P-value 
are computed through 1000 permutations. A positive ES 
indicates activation of the gene set, while a negative ES 
suggests suppression.

Construction and evaluation of cancer risk prognostic 
model
To further ascertain the significance of AS-Cancer core 
targets in cancer onset and progression, sequencing data 
and overall survival information for renal clear cell car-
cinoma (KIRC), low-grade glioma (LGG), breast cancer 
(BRCA), and prostate cancer (PRAD) were retrieved 
from the TCGA database. The validation of AS-Cancer 
core targets was conducted across these four cancer 
types. Univariate Cox proportional hazards regression 
analysis was performed on the AS-Cancer core targets 
within these datasets to generate forest plots. Genes 
exhibiting a significance level of p < 0.05 in the univariate 
Cox regression analysis were identified as prognostically 
relevant genes for subsequent analyses [71].

To mitigate overfitting, LASSO regression analysis was 
conducted using the ‘glmnet’ package in the R (version 

4.3.2) [72]. Subsequently, a risk model was developed 
through stepwise multivariate Cox regression. The 
risk score formula was defined as follows: Risk Score 
(RS) = ∑(Coefgene × expgenes), where Coefgene repre-
sents the coefficient of each prognostic gene, and exp-
gene denotes the expression level of each gene (https:// 
intav er. com/ blog- proje ct- manag ement- proje ct- risk- analy 
sis/ risk- scores- 2/). Utilizing this formula, the risk score 
for each cancer patient was computed, and patients were 
stratified into high-risk and low-risk groups based on the 
median risk score.

Kaplan–Meier survival analysis was conducted using 
the R packages ‘Survival’ and ‘survminer’ in R (version 
4.3.2) to compare survival differences between the high- 
and low-risk groups [73]. A significance level of p < 0.05 
was adopted.

Additionally, in conjunction with survival duration 
and status data, receiver operating characteristic (ROC) 
curves for 1, 3, and 5  years were plotted using the ‘sur-
vivalROC’ R package to evaluate the prognostic model’s 
predictive accuracy [74]. The area under the curve (AUC) 
was utilized for this assessment [75]. Furthermore, the 
change in risk score from low to high was graphed, and 
the association between follow-up time, survival status, 
gene expression, and risk score alteration was analyzed.

In addition to the algorithms used in this study, we aim 
to provide other useful and interesting algorithms for 
data collection and analysis [76–89].

Key protein expression profile in normal and cancer 
tissues.
Key protein expression profile between normal and can-
cerous tissues were analyzed using the Human Protein 
Atlas (HPA) database (https:// www. prote inatl as. org/) 
[90]. Specifically, the HPA database was employed to 
investigate variations in the expression of key AS-cancer 
target proteins across KIRC, LGG, BRCA, PRAD, and 
normal tissues.

Results
Artificial sweetener (AS) targets
After compiling targets obtained from seven commonly 
used databases, we identified 1039 targets for Aspartame, 
633 for Acesulfame, 686 for Sucralose, 710 for NHDC, 
708 for Cyclamate, 864 for Neotame, and 703 for Saccha-
rin. In total, the targets of these seven types of commonly 
used AS were combined, resulting in 2666 AS targets 
(Fig. 2 A-D).

AS‑cancer targets
Using ‘cancer’ as the search keyword, we screened 1172 
targets from the GeneCards database, 101 targets from 
the TTD database, and 168 targets from the OMIM 

http://bioinfoapp.com:3838/tools/
http://bioinfoapp.com:3838/tools/
https://intaver.com/blog-project-management-project-risk-analysis/risk-scores-2/
https://intaver.com/blog-project-management-project-risk-analysis/risk-scores-2/
https://intaver.com/blog-project-management-project-risk-analysis/risk-scores-2/
https://www.proteinatlas.org/
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database. By combining these three databases, a total 
of 1268 cancer targets were identified (Fig.  2E). The 
intersection of 2666 AS targets and 1268 cancer targets 
resulted in a total of 368 AS-cancer intersection targets 
(Fig. 2F).

Protein–protein interaction (PPI) network construction 
and AS‑cancer significant targets selection
A total of 368 AS-cancer intersection targets were 
imported into the STRING database for PPI analysis with 
a confidence score set to 0.995. After analysis, 201 AS-
cancer targets remained following the removal of free 
targets (Supplemental Fig. 1A).

Using Cytoscape 3.9.0, a visual PPI network consist-
ing of 201 nodes and 433 edges was generated, exclud-
ing unconnected proteins (Supplemental Fig. 1B). These 
targets were ranked by Degree value, where darker colors 
and larger circle sizes indicate stronger interactions.

The "Analyze Network" tool was used to calculate 
topological attributes, from which gene target attribute 
data were derived. A total of 48 key AS-cancer targets 
were selected, including TP53, EGFR, SRC, PIK3R1, and 
EP300, among others, based on a degree ≥ 2 times the 
median value, betweenness ≥ median value, and close-
ness ≥ median value.

GO and KEGG enrichment analysis
The 368 targets associated AS-cancer were analyzed 
using the DAVID database, yielding 1362, 155, and 258 
enriched GO-BP, GO-CC, and GO-MF terms, respec-
tively. The top 10 most significant terms were selected 
to generate a GO bar chart (Supplemental Fig.  1C). 
The analysis indicated that these targets are primarily 
involved in negative regulation of apoptosis, positive reg-
ulation of gene expression, cell proliferation, and protein 
kinase B signaling in BP. In terms of cellular components, 

Fig. 2 Artificial sweetener-cancer targets obtain. A Daily consumption of foods containing artificial sweeteners (AS). B Molecular structures 
of seven commonly used AS. C AS targets acquisition database. D AS targets Venn diagram. E Cancer targets Venn diagram. F AS-cancer targets 
Venn diagram
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the targets are predominantly located in the cytoplasm 
and nucleus. Molecular function analysis revealed that 
their functions mainly revolve around protein binding.

Furthermore, KEGG enrichment analysis identified 186 
signaling pathways, with the top 20 most significant path-
ways depicted on a KEGG bubble chart (Supplemental 
Fig.  1D). Among these pathways, those associated with 
AS-cancer significant targets include Pathways in cancer, 
Prostate cancer, EGFR tyrosine kinase inhibitor resist-
ance, and the PI3K-Akt signaling pathway.

AS‑cancer core targets collection and network 
construction
Genes from the ‘Pathways in cancer’ (map05200, 325 
genes) signaling pathway were retrieved from the KEGG 
database and intersected with 48 significant AS-cancer 
targets, resulting in the identification of 35 core AS-can-
cer targets.

The AS-core Target-Cancer network was constructed 
using Cytoscape 3.9.0 software (Fig. 3A).

PPI, GO and KEGG enrichment analysis of AS‑cancer core 
targets
The PPI analysis of 35 AS-cancer core targets was con-
ducted using the STRING database, and the resulting 
network was visualized using Cytoscape 3.9.0. This net-
work consisted of 35 nodes and 76 edges (Fig. 3B).

The 35 AS-cancer core targets were further analyzed 
using the DAVID database, revealing 342 enriched 
GO-BP, 37 GO-CC, and 84 GO-MF terms. The top 10 
most significant terms were selected to generate a GO 
bar chart (Fig. 4A). The analysis highlighted that AS-can-
cer core targets are primarily involved in negative regula-
tion of apoptosis, positive regulation of cell proliferation, 
response to xenobiotic stimulus, and the epidermal 
growth factor receptor signaling pathway in BP. Regard-
ing CC, these targets are predominantly located in the 
cytoplasm and nucleus. MF analysis indicated that their 
functions mainly involve enzyme binding.

Additionally, KEGG enrichment analysis identified 
150 signaling pathways, with the top 10 most significant 
pathways depicted on a KEGG pathway chordal graph 
(Fig.  4B). Among these pathways, those associated with 
AS-cancer core targets include Pathways in cancer, Pros-
tate cancer, Chronic myeloid leukemia, Pancreatic cancer, 
Colorectal cancer, Glioma, and the PI3K-Akt signaling 
pathway.

Molecular docking and molecular dynamics simulation 
validation
The validation of 35 core protein targets in AS-cancer 
involved molecular docking with 7 AS molecules. A 
multi-axis bubble heat map was generated based on 

binding energy data from the molecular docking analysis 
(Fig. 5A). Combinations exhibiting lower binding energies 
for each AS were identified, such as CASP3-Sucralose, 
CCND1-Aspartame, CDK4-Cyclamate, KRAS-Neotame, 
KRAS-Saccharin, MAPK1-Acesulfame, MAPK1-NHDC, 
and BCL2L1-NHDC. The interactions between the AS 
molecules and the target proteins, including the forma-
tion of hydrogen bonds and involved amino acids, were 
visualized in both 2D and 3D structures.

Aspartame binds to seven amino acid residues within 
the CCND1 protein (MET-52, SER-56, VAL-74, ALA-76, 
ASN-146, LYS-147, and LYS-149), forming nine hydro-
gen bonds with bond lengths ranging from 2.4 to 3.3 Å 
(Fig. 5B). Acesulfame interacts with four amino acid resi-
dues in the MAPK1 protein (ALA-92, GLN-97, LYS-99, 
and ASP-100), forming seven hydrogen bonds ranging 
from 2.2 to 3.5 Å (Fig. 5C). Sucralose binds to five resi-
dues in the CASP3 protein (LEU-33, ASP-34, ASN-35, 
SER-36, and ASP-40), resulting in eight hydrogen bonds 
with distances from 2.2 to 3.3 Å (Fig. 5D). NHDC targets 
six residues in the MAPK1 protein (PRO-176, ASP-179, 
HIS-180, ASN-201, LYS-207, and PRO-298), establishing 
seven hydrogen bonds between 2.1 and 2.7  Å (Fig.  5E). 
Cyclamate binds to two residues in the CDK4 protein 
(ASN-83 and ASP-86), forming two hydrogen bonds with 
lengths from 2.1 to 2.8  Å (Fig.  5F). Neotame interacts 
with seven amino acids in the KRAS protein (GLY-13, 
VAL-14, GLY-15, LYS-16, SER-17, VAL-29, and ASP-30), 
forming nine hydrogen bonds with lengths between 2.2 
and 3.4 Å (Fig. 5G). Saccharin binds to three amino acids 
in the KRAS protein (ASN-116, ASP-119, and ALA-146), 
forming three hydrogen bonds with distances from 2.0 
to 2.7  Å (Fig.  5H). NHDC binds to six residues in the 
BCL2L1 protein (CLU-96, TYR-101, ASN-136, TRP-137, 
GLY-138, and ASN-198), forming seven hydrogen bonds 
with bond lengths ranging from 2.0 to 3.5 Å (Fig. 5I).

The binding energies for the AS complexes are as fol-
lows: CCND1-Aspartame, −6.8  kcal/mol; CDK4-Cycla-
mate, −6.5  kcal/mol; MAPK1-Acesulfame, −5.2  kcal/
mol; KRAS-Neotame, −7.9  kcal/mol; CASP3-Sucra-
lose, −5.5  kcal/mol; KRAS-Saccharin, −  6.9  kcal/mol; 
MAPK1-NHDC, −  8.6  kcal/mol; and BCL2L1-NHDC, 
− 8.3 kcal/mol.

The RMSD curve of the MAPK1-NHDC complex indi-
cated that the complex achieved stability after 50  ns, 
reaching dynamic equilibrium (Fig. 6A). The RMSF curve 
showed minimal fluctuation in the MAPK1 protein, indi-
cating stability of its domains and conserved functional 
regions (Fig. 6B). The Rg curve demonstrated consistent 
compactness throughout the simulation, highlighting the 
structural integrity of the complex (Fig.  6C). Molecular 
dynamics simulations confirmed the effective binding of 
MAPK1 and NHDC.
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Similarly, the RMSD curve of the CDK4-Cyclamate 
complex stabilized after 50  ns, confirming its structural 
stability akin to the MAPK1-NHDC complex (Fig.  6D). 
Analysis of RMSF and Rg curves further supported the 
structural integrity and flexibility of the CDK4-Cycla-
mate complex during simulation (Fig. 6E & F).

For the MAPK1-Acesulfame complex, stability was 
achieved after 100 ns, with RMSF and Rg curves reinforc-
ing its structural integrity (supplemental Fig. 2A–C). The 
KRAS-Neotame and KRAS-Saccharin complexes also 

demonstrated stability after 100  ns, as corroborated by 
RMSF and Rg curves (supplemental Fig. 2D-I).

However, the BCL2-Aspartame complex showed insta-
bility within 200  ns based on the RMSD curve, despite 
minimal fluctuation in the protein skeleton observed in 
the RMSF curve and stable tightness reflected in the Rg 
curve (supplemental Fig.  2J-L). Similarly, the CASP3-
Sucralose complex exhibited instability after 200  ns 
according to the RMSD curve, with consistent protein 
skeleton fluctuation observed in the RMSF curve and 

Fig. 3 AS-cancer core targets acquisition. A AS-target-cancer network. The pink octagon symbolizes AS, the green triangle denotes seven 
commonly used types of artificial sweeteners, the orange diamond represents cancer, the purple circle signifies 35 core targets, and the blue lines 
primarily indicate the relationships between the seven AS and the core targets. B PPI network diagram and visualization of AS-cancer core targets. 
In the PPI visualization diagram, core targets are sorted based on their degree value. A darker color and larger circle area indicate a higher Degree 
value, signifying stronger interactions among targets
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Fig. 4 GO and KEGG enrichment analysis of AS-cancer core targets. A Triadic histogram depicting the GO biological processes (BP), molecular 
functions (MF), and cellular components (CC) of AS-cancer core targets. In this visualization, green denotes the BP terms, orange represents the CC 
terms, and purple signifies the MF terms. Each column reflects the GeneRatio associated with its respective terms. B KEGG enrichment analysis 
of top 10 pathways for AS-cancer core targets. Different colors on the right half of the ring represent various pathways. On the left half, different 
colors indicate PValue for the 35 core targets. The lines within the circle illustrate relationships between pathways and targets
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relatively stable system tightness reflected in the Rg curve 
(supplemental Fig. 2M–O).

Pan‑cancer analysis results of AS‑cancer core targets
The expression data for 35 AS-cancer core targets across 
33 types of cancer were obtained from the GEPIA2 

database. These expression profiles were then utilized on 
the CNSknowall website to generate a heatmap illustrat-
ing variations in expression levels among these targets 
across the different cancer types (Fig.  7). The analy-
sis revealed that HSP90AA1 consistently exhibits high 
expression levels across all cancers, followed by CDK4, 

Fig. 5 Molecular docking between AS and AS-cancer core targets. A The molecular docking heat map. The results display seven different circles 
in various colors, each representing a different AS molecule. The size of each circle correlates with the value of the binding energy. B–I 2D and 3D 
interacted structures of AS and AS-cancer core targets. CCND1-Aspartame, MAPK1-Acesulfame, CASP3-Sucralose, MAPK1-NHDC, CDK4-Cyclamate, 
KRAS-Neotame, KRAS-Saccharin, and BCL2L1-NHDC
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Fig. 6 Molecular dynamics simulation. A and D Root mean square deviation (RMSD) of MAPK1-NHDC and CDK4-cyclamate. B and E Root mean 
square fluctuation (RMSF). C and F The radius of gyration (RG) and its values along the three axes (Rgx, Rgy, Rgz)
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AKT1, BCL2L1, and HDAC1. Conversely, the five target 
proteins with the lowest expression levels across all can-
cers are EGF, BCL2, CBL, RAD51, and PIK3CA.

Univariate cox regression analysis results
The 35 AS-cancer core targets underwent univariate 
COX regression analysis using the SangerBox website, 
resulting in 35 sets of forest plots and difference data. 
These difference data were then utilized on the CNSkno-
wall website to generate a heatmap illustrating variations 
identified through univariate COX regression analysis 
among the core targets (Fig.  8A). Significant differences 
in expression were observed in cancers such as ‘LGG’ and 
‘KIRC’ based on these heatmaps.

The log2 (hazard ratio (95% CI)) of the 35 core tar-
gets across 33 types of cancer was calculated using the 
SangerBox website, and each target’s association with the 

cancers was visualized in a forest plot. Specifically, the 
log2 (hazard ratio (95% CI)) values of CDK4 and CASP3 
across the 33 cancers were presented (Fig. 8B and C). A 
log2 (hazard ratio (95% CI)) value of 0 indicates little to 
no correlation between the target and cancer (hazard 
ratio, HR = 1). A HR greater than 1 suggests a positive 
association between the target and cancer, while a value 
less than 1 indicates a negative association. CDK4 shows 
high correlation with LGG, LIHC, and MESO, whereas 
CASP3 is strongly associated with SKCM, ACC, and 
LGG (Fig. 8B and C).

Differentially expressed genes (DEGs) of AS‑cancer core 
targets
The gene expression profiles of normal and cancer 
samples from GSE53757 (KIRC), GSE21354 (LGG), 
GSE42568 (BRCA), and GSE46602 (PRAD) were 

Fig. 7 AS-cancer core targets pan-cancer analysis expression difference heat map. The expression patterns of 35 AS-cancer core targets across 33 
types of cancer are visualized. Red indicates higher expression levels, while blue indicates lower expression levels
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Fig. 8 Univariate Cox regression analysis of AS-cancer core targets. A Visualization heat maps display the differential expression of 35 AS-cancer 
core targets across 33 types of cancer. In these maps, ‘ns’ denotes ‘0’, ‘*’ denotes ‘1’, ‘**’ denotes ‘2’, ‘***’ denotes ‘3’, and ‘****’ denotes ‘4’. B Forest plots 
of univariate Cox regression for CDK4 across 33 cancers show that an HR = 1 indicates no effect, HR < 1 indicates a favorable effect, and HR > 1 
indicates an adverse effect. CDK4 demonstrates significant differences in LGG, LIHC, MESO, KIRP, KICH, SKCM, and LAML. C Forest maps of univariate 
Cox regression for CASP3 across 33 types of cancer reveal significant differences in LGG, ACC, SKCM, GBM, LIHC, and UVM
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retrieved from the GEO database. The original gene 
expression data for KIRC, LGG, BRCA, and PRAD (Sup-
plemental Fig. 3A, C, E and G) were normalized using the 
R ‘limma’ package to produce standardized data (Supple-
mental Fig. 3B, D, F, & H).

DEGs analysis of the GSE53757 dataset revealed signif-
icant upregulation of CCND1, MAPK1, MYC, CDKN1A, 
and PDGFRB, while EGF was notably downregulated 
(Fig.  9A). In the GSE21354 dataset, analysis indicated 
significant upregulation of RELA, BCL2L1, MYC, TP53, 
IGF1R, HIF1A, CCND1, and CDK4 (Fig.  9E). Analysis 
of the GSE42568 dataset identified HDAC1, PTK2, and 
IGF1R as significantly upregulated, whereas PIK3CA, 
TGFBR2, and JUN were downregulated (Supplemental 
Fig. 4A). In the GSE46602 dataset, MYC was found to be 
significantly upregulated, while BCL2 was significantly 
downregulated (Supplemental Fig. 4E).

AS‑cancer targets expression analysis
In the expression analysis of Clear Cell Renal Cell Car-
cinoma (ccRCC or KIRC), significant upregulation was 
observed in MAPK1, MET, ETS1, CDKN1A, and EGLN3, 
while PAK6 and ARNT2 showed significant downregula-
tion (Fig.  9B). For Lower Grade Glioma (LGG), AKT3, 
ARAF, SOS2, RB1, CDK4, GADD45G, RAF1, PIK3R3, 
IGF1R, CDKN1A, CCND1, and TP53 were notably 
upregulated, whereas CAMK2A, PRKCB, PRKCG, 
DDB2, CAMK2B, PDGFA, CALML5, SHC3, MAP2K1, 
PDGFB, CAMK4, CALM1, and KRAS were significantly 
downregulated (Fig.  9F). In Breast Invasive Carcinoma 
(BRCA), IGF1R, RPS6KB2, E2F3, JAG2, and FZD6 were 
significantly upregulated, whereas MAP2K1, JUN, FOS, 
FGF2, FGF10, FGF1, PIK3CA, IGF1, TCF7L2, FZD4, 
FZD5, and WNT11 were downregulated (Supplemental 
Fig.  4B). Lastly, in Prostate Adenocarcinoma (PRAD), 
CREB3L1 was found to be significantly upregulated, 
while FGFR2, IGF1, TCF7L1, BCL2, and TCF7L2 were all 
significantly downregulated (Supplemental Fig. 4F).

GSEA results
The GSEA analysis revealed the molecular functions and 
biological processes implicated in DEGs across four can-
cers. In the KIRC dataset GSE53757, pathways such as 
Allograft rejection, Asthma, Graft-versus-host disease, 
Intestinal immune network for IgA production, and Pri-
mary immunodeficiency were significantly up-regulated 
(Fig.  9C). Conversely, pathways including Ascorbate 
and aldarate metabolism, Phenylalanine metabolism, 
Proximal tubule bicarbonate reclamation, Taurine and 
hypotaurine metabolism, and Valine, leucine, and iso-
leucine degradation showed significant down-regulation 
(Fig. 9D). In the LGG dataset GSE21354, pathways such 
as Antifolate resistance, Antigen processing and pres-
entation, Graft-versus-host disease, Notch signaling 
pathway, and One carbon pool by folate were markedly 
up-regulated (Fig.  9G). Conversely, pathways like Fatty 
acid elongation, GABAergic synapse, Glycosaminoglycan 
biosynthesis-heparan sulfate/heparin, Nicotine addic-
tion, and Synaptic vesicle cycle were significantly down-
regulated (Fig. 9H).

For the BRCA dataset GSE42568, pathways including 
Base excision repair, DNA replication, Fanconi anemia 
pathway, Pyrimidine metabolism, and Vibrio cholerae 
infection were notably up-regulated (Supplemental 
Fig. 4C). Conversely, pathways such as Citrate cycle (TCA 
cycle), Fatty acid degradation, PPAR signaling pathway, 
Propanoate metabolism, and Regulation of lipolysis in 
adipocytes exhibited significant down-regulation (Sup-
plemental Fig. 4D). In the PRAD dataset GSE46602, path-
ways like Base excision repair, Biosynthesis of nucleotide 
sugars, Mannose type O-glycan biosynthesis, Nucleotide 
metabolism, and Pyrimidine metabolism were signifi-
cantly up-regulated (Supplemental Fig.  4G). Conversely, 
pathways such as Chemical carcinogenes-DNA adducts, 
Drug metabolism-cytochrome P450, Graft-versus-host 
disease, Histidine metabolism, and Metabolism of xeno-
biotics by cytochrome P450 showed marked down-regu-
lation (Supplemental Fig. 4H).

Fig. 9 Differentially expressed genes (DEGs) screening, target-pathway diagram and GSEA pathway enrichment analysis in clear cell renal 
cell carcinoma (GSE53757) and brain low-grade glioma (GSE21354). A Volcano plots depicting DEGs in a renal cancer dataset (GSE53757) 
reveal significant up-regulation of CCND1, MAPK1, MYC, CDKN1A, and PDGFRB genes in KIRC patients, while the EGF gene shows significant 
down-regulation in these patients. B Target-pathway diagrams in AS and KIRC. In these diagrams, red indicates genes significantly upregulated, 
blue denotes significantly down-regulated genes, and green represents genes with insignificant changes. Shapes correspond to different targets: 
triangles denote sweetener targets, squares denote disease targets, and circles denote targets common to both sweeteners and diseases. C The 
top 5 GSEA enrichment pathways up-regulated in KIRC. D The top 5 GSEA enrichment pathways down-regulated in KIRC. E Volcano plot of DEGs 
in a low-grade glioma dataset (GSE21354) shows significant up-regulation of RELA, BCL2L1, MYC, TP53, IGF1A, CCND1, and CDK4 in patients 
with LGG. F Target-pathway diagrams in AS and LGG. G The top 5 GSEA enrichment pathways up-regulated in LGG. H The top 5 GSEA enrichment 
pathways down-regulated in LGG

(See figure on next page.)
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Fig. 9 (See legend on previous page.)
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Cancer risk prognostic model
Univariate Cox regression analysis was conducted on 35 
AS-cancer core target genes in TCGA-KIRC, revealing 
that 20 genes were significantly associated with overall 
KIRC survival (p < 0.05) (Fig. 10A). To avoid overfitting, a 
LASSO regression analysis was then performed on these 
20 genes (Fig. 10B and C). Subsequently, multivariate Cox 
regression analysis was conducted on the 9 genes identi-
fied from the LASSO analysis. This analysis identified 5 
genes (CDKN1A, ERBB2, CASP3, BCL2, TGFBR2) for 
constructing the KIRC prognostic model (Fig. 10D). The 
risk score (RS) for each patient was calculated as follows: 
RS = (0.1925 * CDKN1A) + (0.1753 * CASP3) + (0.2663 * 
ERBB2) + (0.2996 * TGFBR2) + (0.2579 * BCL2). RS was 
used to classify patients into high and low-risk groups 
using the median as the cutoff. Survival analysis indi-
cated that patients in the low-risk group had significantly 
better survival outcomes compared to those in the high-
risk group, with a highly significant statistical difference 
(p < 0.001) (Fig.  10E). The area under the ROC curve 
(AUC) for overall survival prediction by this model at 1, 
3, and 5  years was 0.695, 0.681, and 0.697, respectively 
(Fig. 10F). Patients were ranked by their RS, and a RS plot 
was generated. This plot showed that as RS increased, 
the expression levels of CASP3 increased while those 
of CDKN1A, ERBB2, BCL2, and TGFBR2 decreased. 
Moreover, higher RS scores were associated with shorter 
patient survival times and increased mortality (Fig. 10 G).

Similarly, univariate Cox regression analysis was per-
formed on 35 AS-cancer core target genes in TCGA-
LGG, identifying 19 genes significantly associated with 
overall survival of LGG (p < 0.05) (Fig. 11A). To prevent 
overfitting, LASSO regression analysis was applied to 
these 19 genes (Fig.  11B&C). Subsequently, multivari-
ate Cox regression analysis was conducted on the 11 
genes identified from LASSO analysis. This analysis 
resulted in 8 genes (EGFR, ERBB2, JUN, EGF, CDK4, 
BCL2L1, RAD51, TGFBR2) being selected for construct-
ing the LGG prognostic model (Fig. 11D). The risk score 
(RS) for each patient was calculated as: RS = (0.1500 * 
EGFR) + (0.3603 * ERBB2) + (0.1934 * JUN) + (0.1309 * 
EGF) + (0.2287 * CDK4) + (0.2350 * BCL2L1) + (0.2043 
* RAD51) + (0.1495 * TGFBR2). RS was used to classify 

patients into high and low-risk groups using the median 
as the cutoff. Survival analysis showed that patients in the 
low-risk group had significantly better survival outcomes 
compared to those in the high-risk group, with a highly 
significant statistical difference (p < 0.001) (Fig. 11E). The 
AUC of the ROC curve for overall survival predicted by 
this model was 0.843, 0.795, and 0.752 at 1st, 3rd, and 
5th years respectively (Fig. 11F). Patients were ranked by 
their RS, and a RS plot was generated. This plot showed 
that with increasing RS, the expression levels of each 
gene increased. Additionally, higher RS scores were asso-
ciated with shorter patient survival times and increased 
mortality (Fig. 11G).

Univariate Cox regression analysis was performed 
on 35 AS-cancer core target genes in the TCGA-BRCA 
dataset, identifying 6 genes significantly associated with 
overall survival in breast cancer (BRCA) (p < 0.05) (Sup-
plemental Fig.  5A). To minimize overfitting, these 6 
genes were selected for LASSO regression analysis (Sup-
plemental Fig.  5B&C). Subsequently, multivariate Cox 
regression analysis was conducted on the genes derived 
from the LASSO analysis, leading to the selection of 3 
genes (HSP90AA1, PIK3CA, RAD51) for constructing a 
prognostic model for BRCA (Supplemental Fig. 5D). The 
risk score for each patient was calculated as follows: RS 
= (0.1578*HSP90AA1) + (0.1424*PIK3CA) + (0.1053*R
AD51). Patients were stratified into high and low-risk 
groups using the median risk score as the cutoff. Survival 
analysis indicated that patients in the low-risk group had 
significantly better outcomes than those in the high-risk 
group (p = 0.041) (Supplemental Fig. 5E). The AUC of the 
ROC curve predicting overall survival (OS) was 0.578, 
0.602, and 0.593 at one, three, and five years, respectively 
(Supplemental Fig. 5F). Patients were ranked by risk score 
from lowest to highest, and a risk score graph was gener-
ated. Along with increasing risk scores, gene expression 
levels rose, survival times decreased, and a higher num-
ber of patients died (Supplemental Fig. 5G).

Univariate Cox regression analysis was performed 
on 35 AS-cancer core target genes in the TCGA-PRAD 
dataset, identifying 2 genes significantly associated with 
overall survival in prostate cancer (PRAD) (p < 0.05) 
(Supplemental Fig. 6A). To minimize overfitting, these 2 

(See figure on next page.)
Fig. 10 Renal cancer prognosis targets screening, and a cancer risk prognostic model constructing. A Univariate Cox regression analysis initially 
identified 20 prognostic genes (P < 0.05). B A coefficient profile plot was generated against the log(λ) values in the LASSO regression analysis 
model. The optimal parameter (λ) was marked with a dashed line on the left. C LASSO regression analysis of the 20 prognostic genes. D Multivariate 
Cox analysis identified 5 prognostic genes. E Kaplan–Meier survival analysis in high and low risk groups. F ROC curves of overall survival at 1, 3 
and 5 years of the prognostic model. G The relationship between the survival status of renal cancer patients and the risk score of the prognostic 
model, along with changes in gene expression levels as the risk score increases. The dashed line delineates the boundary between the low-risk 
and high-risk groups
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genes were selected for LASSO regression analysis (Sup-
plemental Fig.  6B&C). Subsequently, multivariate Cox 
regression analysis was conducted on the genes derived 
from the LASSO analysis, leading to the selection of 
2 genes (GRB2, RAD51) for constructing a prognostic 
model for PRAD (Supplemental Fig. 6D). The risk score 
for each patient was calculated as follows: RS = (0.7069*
GRB2) + (0.2665*RAD51). Patients were stratified into 
high and low-risk groups using the median risk score as 
the cutoff. Survival analysis indicated that patients in the 
low-risk group had slightly better outcomes than those 
in the high-risk group (p = 0.079) (Supplemental Fig. 6E). 
The AUC of the ROC curve predicting overall survival 
(OS) was 0.990, 0.607, and 0.645 at one, three, and five 
years, respectively (Supplemental Fig. 6F). Patients were 
ranked by their RS, and a RS plot was generated. This 
plot showed that with increasing RS, the expression lev-
els of each gene increased. Additionally, higher RS scores 
were associated with shorter patient survival times and 
increased mortality (Supplemental Fig. 6G).

HPA validation
Immunohistochemical results of normal kidney tis-
sue and KIRC tissue stained with CDKN1A, ERBB2, 
and BCL2 corresponding antibodies CAB000064, 
CAB020416, and CAB000003 were obtained from the 
HPA database, respectively. Immunohistochemical stain-
ing results showed that, compared with normal kidney 
tissue, the immunohistochemical staining of KIRC tis-
sues was light, indicating that the three proteins were sig-
nificantly underexpressed in KIRC tissues (Fig. 12A–C). 
Immunohistochemical results of normal brain tissue 
and LGG tissue stained with CDK4, JUN, and BCL2L1 
corresponding antibodies CAB069405, CAB003801, 
and HPA035734 were obtained from the HPA database, 
respectively. Immunohistochemical staining results 
showed that, compared with normal tissue, the immu-
nohistochemical staining of LGG tissue was deeper, 
indicating that these three proteins were significantly 
overexpressed in LGG tissue (Fig. 12D–F).

Immunohistochemical results for normal breast tissue 
and BRCA tissue stained with antibodies CAB017804, 
CAB002058, and HPA039310 targeting PIK3CA, 

HSP90AA1, and RAD51 were obtained from the HPA 
database, respectively. Immunohistochemical stain-
ing revealed that compared to normal breast tissue, 
BRCA tissue exhibited deeper staining, indicating high 
expression levels of these three proteins (Supplemental 
Fig. 7A–C).

Similarly, immunohistochemical results for normal 
prostate tissue and PRAD tissue stained with GRB2 and 
RAD51 antibodies CAB002589 and CAB010381 were 
retrieved from the HPA database, respectively. Immu-
nohistochemical analysis of PRAD tissue demonstrated 
deeper staining compared to normal tissue, highlighting 
high expression levels of these two proteins in PRAD tis-
sue (Supplemental Fig. 7D–E).

Discussion
Artificial sweeteners (AS) are widely added to food and 
beverages due to their low-calorie content and intense 
sweetness. By 2028, the market for AS is expected to 
approach nearly $10 billion [8]. The extensive use of AS 
has raised concerns regarding environmental pollu-
tion and human health. In many countries, AS serve as 
indicators of pollution in groundwater, rivers, lakes, and 
seas [91–94]. Following the consumption of AS, there 
have been observed changes in the type and quantity of 
human intestinal microbiota, potentially linked to the 
development of various diseases [24, 25, 95–97]. AS con-
sumption has been associated with premature births, 
DNA fragmentation, cancer, diabetes, obesity, and the 
onset of various diseases [13, 14, 29, 98–100].

The widespread use of artificial sweeteners has been 
linked to a rise in the prevalence of various diseases, 
posing a significant public health concern. As artifi-
cial sweeteners are mass-produced and broadly applied, 
their potential harm is unavoidable for many individuals. 
This issue demands urgent attention from researchers 
and healthcare professionals alike to mitigate associated 
health risks. This study aims to investigate AS-related tar-
gets and signaling pathways involved in carcinogenesis.

Based on commonly used AS in China, USA, and 
Europe, aspartame, acesulfame, Sucralose, NHDC, cycla-
mate, neotame, and saccharin, were selected for further 
investigation in this study. A total of 2666 AS-related 

Fig. 11 Brain low-grade glioma prognosis targets screening, and a glioma cancer risk prognostic model constructing. A Univariate Cox regression 
analysis initially identified 19 prognostic genes (P < 0.05). B A coefficient profile plot was generated against the log(λ) values in the LASSO regression 
analysis model. The optimal parameter (λ) was marked with a dashed line on the left. C LASSO regression analysis of the 19 prognostic genes. 
D Multivariate Cox analysis identified 8 prognostic genes. E Kaplan–Meier survival analysis in high and low risk groups. F ROC curves of overall 
survival at 1, 3 and 5 years of the prognostic model. G The relationship between the survival status of brain low-grade glioma patients and the risk 
score of the prognostic model, along with changes in gene expression levels as the risk score increases. The dashed line delineates the boundary 
between the low-risk and high-risk groups

(See figure on next page.)



Page 22 of 31Xie et al. Journal of Translational Medicine           (2025) 23:32 

Fig. 11 (See legend on previous page.)



Page 23 of 31Xie et al. Journal of Translational Medicine           (2025) 23:32  

Fig. 12 Validation of the expression of core target proteins in KIRC and LGG, as well as in their respective normal tissues. A–C Immunohistochemical 
staining of CDKN1A, ERBB2, and BCL2 proteins in KIRC and normal renal tissues. D–F Immunohistochemical staining of CDK4, JUN, and BCL2L1 
in LGG and normal brain tissue
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targets were identified, alongside 1268 cancer-related 
targets, resulting in 368 AS-cancer intersection targets. 
GO enrichment analysis indicated strong associations of 
these 368 AS targets with cell proliferation, migration, 
apoptosis, and gene expression regulation. Furthermore, 
KEGG pathway analysis highlighted cancer-related path-
ways, which comprised half of the Top 20 enriched sign-
aling pathways. The results highlight the critical role of 
AS in increasing cancer risk across various types.

After initial screening, 48 significant AS-cancer tar-
gets were identified. These targets were then intersected 
with those 325 genes found in the ‘pathways in cancer 
(map05200)’, resulting in 35 core AS-cancer targets. Sub-
sequent research focused on these 35 targets, including 
TP53, EGFR, SRC, PIK3R1, AKT1, HSP90AA1, JUN, and 
CDKN1A, which are key genes in carcinogenesis. TP53 is 
one of the most well-known molecules in cancer biology, 
playing a key role in carcinogenesis, tumor angiogenesis, 
immune infiltration, metastasis, and cancer treatment 
across various cancer types [101–103]. The EGFR mutant 
is a key regulator in tumorigenesis and cancer treatment 
[104, 105]. SRC, PIK3R1, JUN, and AKT1 are key signal-
ing molecules involved in various physiological processes 
in cancer cells [106–111]. HSP90AA1 has been identified 
as a significant target in cancer treatment [112–114].

A network illustrating the association between AS com-
pounds and cancer targets was constructed to elucidate 
their relationship. GO-BP enrichment analysis indicated 
that these core targets are involved in cell proliferation, 
apoptosis, positive regulation of gene expression, and the 
insulin receptor signaling pathway. KEGG enrichment 
analysis revealed strong associations between these core 
targets and pathways related to various cancers, includ-
ing prostate, pancreatic, colorectal cancers, glioma, and 
chronic myeloid leukemia.

Moreover, the 35 targets were strongly linked to path-
ways in cancer, endocrine resistance, and the PI3K-Akt 
and FoxO signaling pathways. These cancer pathways 
are integral to nearly every physiological process in the 
tumor cell lifecycle [115–117]. Endocrine resistance 
plays a pivotal role in the treatment of various cancers 
[118–120]. The PI3K-Akt signaling pathway is closely 
associated with tumorigenesis, cell growth and prolif-
eration, invasion, metastasis, apoptosis, and autophagy 
[121–123]. FoxO collaborates with the PI3K-Akt path-
way, playing crucial roles in cancer inhibition and therapy 
[124–126].

To further explore the interactions between the 35 core 
targets and the 7 commonly used AS, molecular dock-
ing was employed to validate their association. Among 
the seven AS, Aspartame, NHDC, and Neotame dem-
onstrated strong affinity for the core targets, whereas 
Sucralose and Acesulfame showed weaker binding. Eight 

molecular docking results were selected from a total 
of 245 docking outcomes for presentation: CCND1-
Aspartame, MAPK1-Acesulfame, MAPK1-NHDC, 
CASP3-Sucralose, CDK4-Cyclamate, KRAS-Saccharin, 
KRAS-Neotame, and BCL2L1-NHDC. Analysis of both 
2D and 3D docking results indicated a substantial asso-
ciation between the AS and the core targets.

CCND1 is implicated in disease pathogenesis, specifi-
cally through chromosomal aberration such as transloca-
tion t(11;14)(q13;q32), which may lead to B-lymphocytic 
malignancies like mantle-cell lymphoma, multiple mye-
loma, and parathyroid adenomas [127–129]. Activa-
tion of CCND1 potentially contributes to oncogenesis 
by modulating the G1/S transition in the cell cycle [130, 
131].

MAPK1 serves as a critical component of the MAP 
kinase signaling transduction pathway, playing a piv-
otal role in the MAPK/ERK cascade that regulates cell 
growth, survival, adhesion, and differentiation through 
the control of transcription, translation, and cytoskel-
etal rearrangements [132, 133]. CASP3 acts as a signifi-
cant effector caspase involved in the execution phase of 
apoptosis [134, 135]. Additionally, CASP3 cleaves and 
activates several proteins, including caspase-6, −7, and 
−9, interleukin-18, huntingtin, AKT1, and gasdermin-E, 
among others [135–138].

CDK4 forms complexes that phosphorylate and inhibit 
RB1, thereby regulating the G1/S transition in the cell 
cycle, sharing functional similarities with CCND1 [139]. 
KRAS is the most well-known oncogene, characterized 
by a high mutation rate across various cancers and linked 
to several lethal cancers and clinical syndromes [140–
142]. BCL2L1 functions as a potent inhibitor of cell death 
by blocking activation of caspases, regulating cell death 
through inhibition of the voltage-dependent anion chan-
nel (VDAC), and acting as a regulator of the G2 check-
point [143, 144].

Molecular dynamics simulation is a powerful technique 
for assessing molecule docking results and simulating 
the binding process between small molecules and pro-
teins. Molecular dynamics simulations were conducted 
to confirm the association between the AS compounds 
and core targets. Significant parameters including RMSD, 
RMSF, and Rg were measured to assess the stability of 
these interactions. Following the simulation process, 
complexes such as MAPK1-NHDC, CDK4-Cyclamate, 
KRAS-Saccharin, MAPK1-Acesulfame, and KRAS-
Neotame exhibited good stability and protein structure 
flexibility. However, BCL2-Aspartame and CASP3-Sucra-
lose displayed fluctuations within the 200  ns simulation 
period and did not achieve stability. Molecular dynam-
ics simulations validated the molecular docking results 
and confirmed the interactions between AS compounds 
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and the core targets. AS elevated cancer risk by binding 
to key targets, thereby disrupting signal transduction 
and inducing carcinogenesis across various cancer types. 
Different AS molecules bind to distinct targets and are 
involved in various signaling pathways. The molecular 
mechanisms underlying carcinogenesis also differ.

The expression profiles of 35 AS-cancer core targets 
were presented in a heatmap to clearly illustrate the dif-
ferences in expression levels across 33 types of cancer. 
HSP90AA1 exhibited high expression across nearly all 
33 cancers, whereas EGF showed the opposite pattern. 
Although the expression of HSP90AA1 and EGF signifi-
cantly differed, both played crucial roles in various cancer 
types by participating in essential cell signaling pathways 
related to carcinogenesis, invasion, metastasis, and can-
cer treatment [145–147].

The expression differences among the 35 core targets 
were calculated across 33 cancer types and illustrated 
in a heatmap. Significant variations in the expression of 
these core targets were observed in low grade brain gli-
oma (LGG) and kidney renal clear cell carcinoma (KIRC), 
indicating a strong association of AS with these specific 
cancer types.

The hazard ratio (95% CI) of the 35 core targets across 
33 types of cancer was calculated. CDK4 shows a high 
correlation with KICH, THCA, and PRAD, while CASP3 
is strongly associated with TGCT, ACC, and LGG. Previ-
ous studies have emphasized the critical roles of CDK4 
in kidney cancer [148], thyroid carcinoma [149], and 
prostate cancer [150, 151]. CASP3 has been shown to 
be strongly associated with prostate cancer [152], blad-
der cancer [153], gastric cancer [154], lung cancer [154], 
and others [155]. These publications strongly support our 
findings.

After normalizing gene expression data, differential 
expression analysis of GSE53757 (KIRC), GSE21354 
(LGG), GSE42568 (BRCA), and GSE46602 (PRAD) iden-
tified up- or down-regulated AS-cancer core targets. 
These findings elucidate the correlation between differ-
entially expressed genes (DEGs) across various cancers 
and AS-cancer core targets, thereby substantiating AS’s 
role in carcinogenesis in KIRC, LGG, BRCA, and PRAD. 
GSEA analysis revealed the pathways associated with 
DEGs in these cancers, which play pivotal roles in cancer 
development.

After integrating univariate Cox regression, LASSO 
regression, and multivariate Cox regression analyses, 
CDKN1A, ERBB2, CASP3, BCL2, and TGFBR2 were 
selected to construct the prognostic model for KIRC. 
CDKN1A emerged as a critical predictor of poor out-
comes in patients with chromophobe renal cell carci-
noma [156]. Aberrant ERBB2 expression has been shown 
to correlate with renal cancers [157, 158], while BCL2 is 

recognized as a significant therapeutic target for renal 
cancer treatment [159, 160]. Regulation of TGFBR2 
expression represents an important strategy in clear cell 
renal cell carcinoma (ccRCC) therapy [161]. As the risk 
score (RS) increased, CASP3 expression levels rose, while 
CDKN1A, ERBB2, BCL2, and TGFBR2 levels decreased. 
Additionally, higher RS scores correlated with shorter 
patient survival times and increased mortality in renal 
carcinoma.

Moreover, as the RS increased, the expression levels of 
all 8 genes (EGFR, ERBB2, JUN, EGF, CDK4, BCL2L1, 
RAD51, TGFBR2) also increased. Higher RS scores were 
linked to shorter patient survival times and increased 
mortality in brain lower grade glioma. As RS increased, 
HSP90AA1, PIK3CA, and RAD51 gene expression levels 
rose, leading to decreased survival times and increased 
mortality in breast cancer. With increasing RS, the 
expression levels of GRB2 and RAD51 increased. Fur-
thermore, higher RS scores were associated with shorter 
patient survival times and increased mortality in prostate 
cancer.

To validate the significant roles of AS-cancer core 
targets in the progression of KIRC, LGG, BRCA, and 
PRAD, the HPA database was utilized to provide immu-
nohistochemical data from clinical cancer samples. Spe-
cific antibodies targeting AS-cancer key proteins were 
used for staining tumor and normal tissue sections. 
CDKN1A, ERBB2, and BCL2 were found to play criti-
cal roles in KIRC progression. Additionally, CDK4, JUN, 
and BCL2L1 were significantly overexpressed in LGG tis-
sues. High expression levels of PIK3CA, HSP90AA1, and 
RAD51 were detected in BRCA tissues, while elevated 
expression of GRB2 and RAD51 was observed in PRAD 
tissues.

Through an integrative analysis encompassing data 
mining, machine learning, network toxicology, molecu-
lar docking, molecular dynamics simulations, and HPA 
validation, we concluded that commonly used artificial 
sweetener (AS) molecules were correlated with 35 core 
targets. These targets regulate the PI3K-Akt, endocrine 
resistance, and FoxO signaling pathways, thereby increas-
ing the risk of cancer in kidney cancer (KIRC), low-grade 
glioma (LGG), breast cancer (BRCA), and prostate can-
cer (PRAD).

However, this study has several limitations: 1. The find-
ings are primarily derived from data mining, machine 
learning, bioinformatics analysis, and computational 
methods, lacking direct experimental evidence to sub-
stantiate the link between artificial sweeteners and 
increased cancer risk. 2. The results may be impacted 
by issues related to data quality, source variability, and 
algorithmic biases. 3. Potential deviations in results due 
to unidentified influencing factors. Although this study 
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does not include direct in  vivo experimental results, it 
still provides a valuable methodological framework for 
assessing the safety of food additives, offering significant 
guidance for future research.

Based on our findings, we strongly advise the public 
to reduce their intake of artificial sweeteners to alleviate 
common health issues such as cardiovascular disease, 
diabetes, and irritable bowel syndrome. Additionally, 
we urge food manufacturers to limit the use of artificial 
sweeteners and other additives, prioritizing public health 
over financial gains. Finally, we call on government bod-
ies and relevant agencies to conduct thorough evalua-
tions of food additive safety and to develop policies that 
guide the public towards healthier dietary choices and 
greater health awareness.

Moving forward, our research will focus on: 1. Inves-
tigating the specific impact of commonly used artificial 
sweetener molecules on cancer risk. 2. Enhancing our 
findings with physiological and biochemical data from 
cellular and animal studies, pathological images, and 
transcriptomic and proteomic sequencing to provide 
direct evidence of the carcinogenic potential of artificial 
sweeteners. 3. Incorporating global cohort studies related 
to artificial sweetener usage to enrich public health data. 
4. Gathering data from clinical trials, which, despite being 
challenging, could furnish direct experimental proof that 
artificial sweeteners contribute to cancer development.

Conclusion
In this study, we employed data mining, machine learn-
ing, network toxicology, molecular docking, molecu-
lar dynamics simulations, and clinical sample staining 
to explore the relationship between artificial sweeten-
ers (AS) and cancer. Our findings indicate that AS may 
potentially increase the incidence of kidney cancer, low-
grade glioma, breast cancer, and prostate cancer through 
multiple targets and signaling pathways.
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Supplementary material 1: Supplemental Figure 1. Artificial sweeteners-
cancer targets analysis.Protein-protein interactionnetworks of AS-cancer 
targets. In the PPI network, light blue and dark purple lines represent 
known interactions, while green, red, and dark blue lines represent pre-
dicted interactions. Yellow, black, and light purple lines indicate correla-
tions based on text mining, co-expression, and protein homology. The 3D 
structure within each node is either known or predicted.Visualization of 
the PPI network for AS-cancer targets. In the PPI visualization, the core tar-
gets are ranked by their degree values. The darker the color and the larger 
the circle area, the higher the degree value, indicating stronger reciprocity 
among gene targets.Triadic histogram depicting biological processes, 
molecular functions, and cellular componentsassociated with AS-cancer 
targets.Bubble maps illustrating the top 20 pathways from KEGG enrich-
ment analysis of AS-cancer targets. Supplemental Figure 2. Molecular 

dynamics simulation.Root mean square deviation, root mean square 
fluctuation, and radius of gyrationof MAPK1-Acesulfame.RMSD, RMSF, and 
RG of KRAS-Neotame.RMSD, RMSF, and RG of KRAS-Saccharin.RMSD, RMSF, 
and RG of BCL2-Aspartame.RMSD, RMSF, and RG of CASP3-Sucralose. 
Supplemental Figure 3. Normalization of the four cancer datasets from 
GEO database.KIRC, LGG, BRCA, and PRAD untreated and normalized 
datasets. Supplemental Figure 4. Differentially expressed genesscreening, 
target-pathway diagram and GSEA pathway enrichment analysis in breast 
invasive carcinomaand prostate adenocarcinoma.Volcano plots depicting 
DEGs in a breast cancer datasetreveal significant up-regulation of HDAC1, 
PTK2, and IGF1R genes in BRCA patients, while PIK3CA, TGFBR2, and JUN 
genes show significant down-regulation in these patients.Target-pathway 
diagrams in AS and BRCA. In these diagrams, red indicates genes signifi-
cantly upregulated, blue denotes significantly down-regulated genes, and 
green represents genes with insignificant changes. Shapes correspond 
to different targets: triangles denote sweetener targets, squares denote 
disease targets, and circles denote targets common to both sweeten-
ers and diseases.The top 5 GSEA enrichment pathways up-regulated in 
BRCA.The top 5 GSEA enrichment pathways down-regulated in BRCA.
Volcano plot of DEGs in a prostate adenocarcinomashows significant up-
regulation of the MYC gene in PRAD patients, while the BCL2 gene shows 
significant down-regulation in these patients.Target-pathway diagrams 
in AS and PRAD.The top 5 GSEA enrichment pathways up-regulated in 
PRAD.The top 5 GSEA enrichment pathways down-regulated in PRAD. 
Supplemental Figure 5. Breast cancer prognosis targets screening, and 
the cancer risk prognostic model constructing.Univariate Cox regression 
analysis initially identified 6 prognostic genes.A coefficient profile plot was 
generated against the logvalues in the LASSO regression analysis model. 
The optimal parameterwas marked with a dashed line on the left.LASSO 
regression analysis of the 6 prognostic genes.Multivariate Cox analysis 
identified 3 prognostic genes.Kaplan-Meier survival analysis in high and 
low risk groups.ROC curves of overall survival at 1, 3 and 5 years of the 
prognostic model.The relationship between the survival status of breast 
cancer patients and the risk score of the prognostic model, along with 
changes in gene expression levels as the risk score increases. The dashed 
line delineates the boundary between the low-risk and high-risk groups. 
Supplemental Figure 6. Prostate cancer prognosis targets screening, and 
the cancer risk prognostic model constructing.Univariate Cox regression 
analysis initially identified 2 prognostic genes.A coefficient profile plot 
was generated against the logvalues in the LASSO regression analysis 
model. The optimal parameterwas marked with a dashed line on the left.
LASSO regression analysis of the 2 prognostic genes.Multivariate Cox 
analysis identified 2 prognostic genes.Kaplan-Meier survival analysis in 
high and low risk groups.ROC curves of overall survival at 1, 3 and 5 years 
of the prognostic model.The relationship between the survival status of 
prostate cancer patients and the risk score of the prognostic model, along 
with changes in gene expression levels as the risk score increases. The 
dashed line delineates the boundary between the low-risk and high-risk 
groups. Supplemental Figure 7. Validation of the expression of core target 
proteins in BRCA and PRAD, as well as in their respective normal tissues.
Immunohistochemical staining of PIK3CA, HSP90AA1, and RAD51 proteins 
in BRCA and normal breast tissues.Immunohistochemical staining of GRB2 
and RAD51 in PRAD and normal prostate tissue
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